版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
門頭溝區(qū)2024年初三年級(jí)綜合練習(xí)(二)
數(shù)學(xué)
考生須知:
L本試卷共8頁(yè),共三道大題,28個(gè)小題.滿分100分.考試時(shí)間120分鐘.
2.在試卷和答題卡上準(zhǔn)確填寫學(xué)校和姓名,并將條形碼粘貼在答題卡相應(yīng)位置處.
3.試題答案一律填涂或書寫在答題卡上,在試卷上作答無(wú)效.
4.在答題卡上,選擇題、作圖題用23鉛筆作答,其它試題用黑色字跡簽字筆作
答.
5.考試結(jié)束,將試卷、答題卡和草稿紙一并交回.
一、選擇題(本題共16分,每小題2分)第1一8題均有四個(gè)選項(xiàng),符合題意的
選項(xiàng)只有一個(gè).
1.某幾何體的展開圖是在大小形狀相等的兩個(gè)正方形、四個(gè)長(zhǎng)寬不等的矩形組成,則該幾
何體是()
A.正方體B.長(zhǎng)方體C.四棱錐D.三棱柱
2.目前所知病毒中最小的是一級(jí)口蹄疫病毒,它屬于微核糖核酸病毒科鼻病毒屬,其最大
顆粒直徑為23納米,即0.000000023米,將0.000000023化成科學(xué)計(jì)數(shù)法為()
A.2.3x10-7B.2.3x10-8C.2.3x109D.
0.23x107。
3.下圖是手機(jī)的一些手勢(shì)密碼圖形,其中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()
4.某個(gè)正多邊形的一個(gè)內(nèi)角是它的外角的2倍,則該正多邊形是()
A.正方形B.正五邊形C.正六邊形D.正七邊
形
5.數(shù)軸上的三點(diǎn)A、B、C所表示的數(shù)分別為〃、氏。且滿足。十力<0,岳C<0,則原點(diǎn)
在()
A.點(diǎn)4左側(cè)B?點(diǎn)4點(diǎn)8之間(不含點(diǎn)4點(diǎn)B)
C.點(diǎn)B點(diǎn)。之間(不含點(diǎn)B點(diǎn)C)D.點(diǎn)C右側(cè)
Zl=70°,/2的度數(shù)為()
C.45°D.70°
7.小明去商場(chǎng)購(gòu)物,購(gòu)買完后商家有一個(gè)抽獎(jiǎng)答謝活動(dòng),有機(jī)張獎(jiǎng)券,其中含獎(jiǎng)項(xiàng)的獎(jiǎng)券
有〃張,每名已購(gòu)物的顧客只能抽取一次,小明抽之前有10名顧客已經(jīng)抽過(guò)獎(jiǎng)券,中獎(jiǎng)的
有3人,則小明中獎(jiǎng)的概率為()
HD.9
A.—B?品
min
8.如圖所示,兩個(gè)體積不等的圓柱形水杯,大小水杯口均朝上,現(xiàn)往大水杯中均勻注水,
注水過(guò)程中小水杯始終在原來(lái)位置,設(shè)水面上升高度為從注水時(shí)間為/,下列圖象能正確
反應(yīng)注水高度隨時(shí)間變化關(guān)系的是()
D.
二、填空題(本題共16分,每小題2分)
9.如果分式絲巴值為零,那么實(shí)數(shù)機(jī)的取值是1
10.如圖所示網(wǎng)格是正方形網(wǎng)格,點(diǎn)A,B,C是網(wǎng)格線交點(diǎn),則sinA=
12.如圖,AB是OO的直徑,弦CD工AB于點(diǎn)E,AC=CD,加果則?!?/p>
的半徑長(zhǎng)為
13.某函數(shù)圖象滿足過(guò)點(diǎn)(0,2),且當(dāng)x>0時(shí),),隨x的增大而增大,寫出一個(gè)滿足條件的
表達(dá)式.
14.如圖,在平面直角坐標(biāo)系內(nèi),某圖象上的點(diǎn)A、8為整數(shù)點(diǎn),以點(diǎn)。為位似中心將該圖
像擴(kuò)大為原的2倍,則點(diǎn)A的坐標(biāo)為.
15.某校抽測(cè)了某班級(jí)的10名學(xué)生競(jìng)賽成績(jī)(均為整數(shù)),從低到高排序如下:*,々,不,
x4,x5,x6,x7,4,無(wú)9,x10,如果z=83,Xy=861該組數(shù)據(jù)的中位數(shù)是85,則%二
16.“誰(shuí)知盤中餐,粒粒皆辛苦”知農(nóng)愛農(nóng),珍惜糧食,傳承美德,從校園做起.為響應(yīng)此
22.在平面直角坐標(biāo)系xOy中,反比例函數(shù)),=4化=0)的圖象過(guò)點(diǎn)40』).
(1)求%的值;
(2)一次函數(shù)),=依+力(〃。0)的圖象過(guò)4(0,3),與),=々%>0)的圖象交于兩點(diǎn),兩
X
函數(shù)圖象交點(diǎn)之間的部分組成的封閉圖形稱作圖象“G”,該圖象內(nèi)橫縱坐標(biāo)均為整數(shù)的
點(diǎn)稱為“G區(qū)域點(diǎn)”(不含邊界);
①當(dāng)一次函數(shù)圖象過(guò)(3』)時(shí),存在個(gè)“G區(qū)域點(diǎn)”;
②如果“G區(qū)域點(diǎn)”的個(gè)數(shù)為3個(gè),畫出示意圖,直接寫出〃的取值范圍.
23.啦啦操是一項(xiàng)展現(xiàn)青春活力的運(yùn)動(dòng)項(xiàng)目,北京市多所學(xué)校都選擇以啦啦操為載體,讓更
多的學(xué)生在訓(xùn)練的過(guò)程中收獲了健康與快樂(lè).某校啦啦操學(xué)員共16名,測(cè)量并獲取了所有
學(xué)員的身高(單位:cm),數(shù)據(jù)整理如下:
a.16名學(xué)生的身高:
153153157158159160160161
164164164164167169169169
近16名學(xué)生的身高的平均數(shù)、中位數(shù)、眾數(shù):
平均數(shù)中位數(shù)眾數(shù)
161.94mn
(1)寫出表中〃?,〃的值;
(2)教練將學(xué)員分組進(jìn)行PK賽,如果一組學(xué)員的身高的方差越小,則認(rèn)為該舞臺(tái)呈現(xiàn)效
果越好,據(jù)此推斷:下列兩組學(xué)員中,舞臺(tái)呈現(xiàn)效果更好的是(填“A組”或“5組”);
4組學(xué)員身高157158159160161
3組學(xué)員的身高161164164164167
(3)該啦啦操隊(duì)要選五名學(xué)生,己確定三名學(xué)員參賽,她們的身高分別為:160,160,164,
32
她們的身高的方差為二.在選另外兩名學(xué)員時(shí),首先要求所選的兩名學(xué)員與已確定的三名
9
32
學(xué)員所組成的五名學(xué)員的身高的方差小于一,其次要求所選的兩名學(xué)員與已確定的三名學(xué)
9
員所組成的五名學(xué)員的身高的平均數(shù)盡可能的大,則選出的另外兩名學(xué)員的身高分別為
______和______.
24.如圖,A8是OO的直徑,AC切GO于點(diǎn)4連接3C交OO于點(diǎn)Q,AC=CF,
連接A尸并延長(zhǎng)交于點(diǎn)七,連接AO.
(1)求證:ZEBD=/EAB;
(2)若A6=4,CF=3,求4產(chǎn)值.
25.醫(yī)學(xué)院某藥物研究所研發(fā)了甲,乙兩種新藥,據(jù)監(jiān)測(cè),如果成人按規(guī)定的劑量服用,服
藥后的時(shí)間x(小時(shí)),服用甲種藥物后每亳升血液中的含藥量M(微克),服用乙種藥物后
每亳升血液中的含藥最乃(微克),記錄部分實(shí)驗(yàn)數(shù)據(jù)如下:
X00.200.401.001.532.262.523.384.535.44?.?
>100.681.363.403.212.772.652.311.921.65???
018
為00.369.005.032.261.700.660.190.07???
對(duì)以上數(shù)據(jù)進(jìn)行分析,補(bǔ)充完成以下內(nèi)容.
(1)可以用函數(shù)刻畫片與%,K與X之間的關(guān)系,在同一平面直角坐標(biāo)系XO.V中,已經(jīng)畫
出M與x的函數(shù)圖象,請(qǐng)畫出為與x的函數(shù)圖象;
(2)如果兩位病人在同一時(shí)刻分別服用這兩種藥物,服藥1小時(shí)后兩位病人每亳升血液中
含藥量相差_____微克;兩位病人大約服藥后小時(shí)每亳升血液中含藥量相等;(結(jié)果
保留小數(shù)點(diǎn)后一位)
(3)據(jù)測(cè)定,每亳升血液中含藥量不少于2微克時(shí)對(duì)治療疾病有效,則兩種藥物中
種藥的藥效持續(xù)時(shí)間較長(zhǎng),藥效大約相差______小時(shí)(結(jié)果保留小數(shù)點(diǎn)后一位).
26.在平面直角坐標(biāo)系xOy中,拋物線》二以2+/以+。的經(jīng)過(guò)點(diǎn)40,-\將點(diǎn)A向左平
移4個(gè)單位長(zhǎng)度,得到點(diǎn)4點(diǎn)4在拋物線上.
O
(1)求拋物線的對(duì)稱軸;
(2)點(diǎn)8的縱坐標(biāo)為-3時(shí),求〃的值;
(3)己知點(diǎn)M(-1,:),N(T,-3).若拋物線與線段MN恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖
象,求。的取值范圍.
27...ABC中,AB=AC,ZBAC=45°,CDJ_AB于點(diǎn)。,點(diǎn)E,/分別在AC,BC
上,且=EF,CQ交于點(diǎn)N.
2
圖1圖2
EN
(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),
CF
(2)如圖2,當(dāng)點(diǎn)七在4C邊上時(shí),
①依題意補(bǔ)全圖2;
EN
②的值是否發(fā)生變化,請(qǐng)說(shuō)明理由.
CF
"kx-\上-b(x<〃),)為一次
28.對(duì)于關(guān)于x的一次函數(shù)),=履+人(%。0),我們稱函數(shù)y{n}=?
函數(shù)丁=依+人(女工0)的〃級(jí)衍生函數(shù)(其中〃為常數(shù)).
例如,>=-4工+1的3級(jí)衍生函數(shù)為:當(dāng)x<3時(shí),y{x}=Mx+l;當(dāng)戈之3時(shí),
y{x}=4x-\.
(1)如果y=x+l的4級(jí)衍生函數(shù)為y{4},
①當(dāng)x=3時(shí),y{4}=;
②當(dāng)y{4}=_]時(shí),x=.
3
(2)如果y=2x+l的_2級(jí)衍生函數(shù)為y{-2},求雙曲線),=--與),{-2}的圖像的交點(diǎn)
?X
坐標(biāo);
(3)如果以點(diǎn)4(0,1)為圓心,2為半徑的OA與y=-x+2的t級(jí)衍生函數(shù)》{一1}的圖
像有交點(diǎn),直接寫出/的取值范圍.
門頭溝區(qū)2024年初三年級(jí)綜合練習(xí)(二)
數(shù)學(xué)
考生須知:
L本試卷共8頁(yè),共三道大題,28個(gè)小題.滿分100分.考試時(shí)間120分鐘.
2.在試卷和答題卡上準(zhǔn)確填寫學(xué)校和姓名,并將條形碼粘貼在答題卡相應(yīng)位置處.
3.試題答案一律填涂或書寫在答題卡上,在試卷上作答無(wú)效.
4.在答題卡上,選擇題、作圖題用23鉛筆作答,其它試題用黑色字跡簽字筆作
答.
5.考試結(jié)束,將試卷、答題卡和草稿紙一并交回.
一、選擇題(本題共16分,每小題2分)第1一8題均有四個(gè)選項(xiàng),符合題意的
選項(xiàng)只有一個(gè).
1.某幾何體的展開圖是莊大小形狀相等的兩個(gè)正方形、四個(gè)長(zhǎng)寬不等的矩形組成,則該兒
何體是()
A.正方體B.長(zhǎng)方體C.四棱錐D.三棱柱
【答案】B
【解析】
【分析】本題考查的是長(zhǎng)方體的展開圖的認(rèn)識(shí),熟記長(zhǎng)方體的展開圖中平面圖形的形狀是解
本題的關(guān)鍵,先根據(jù)要求畫出其中I種展開圖的形態(tài),從而可得答案.
【詳解】解:某幾何體的展開圖是由大小形狀相等的兩個(gè)正方形、四個(gè)長(zhǎng)寬不等的矩形組成,
如圖,
,則該幾何體是長(zhǎng)方體;
故選B
2.目前所知病毒中最小的是?級(jí)口蹄疫病毒,它屬于微核糖核酸病毒科鼻病毒屬,其最大
顆粒直徑為23納米,即0.000000023米,將0.000000023化成科學(xué)計(jì)數(shù)法為()
A.2.3xlO-7B.2.3x10-8C.2.3'10一9D.
0.23xl()T°
【答案】B
【解析】
【分析】本題考查用科學(xué)記數(shù)法表示較小的數(shù),根據(jù)絕對(duì)值小于1的數(shù)可以用科學(xué)記數(shù)法表
示,一般形式為axl(T”,使用負(fù)指數(shù)哥,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0
的個(gè)數(shù)所決定,即可求解.
【詳解】解:0.000000023=2.3xlO-8.
故選:B.
3.下圖是手機(jī)的一些手勢(shì)密碼圖形,其中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()
【答案】D
【解析】
【分析】本題考查了軸對(duì)稱圖形和中心對(duì)稱圖形的識(shí)別,根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的
定義逐項(xiàng)分析即可.
【詳解】解:A.該圖既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,故不符合題意;
B.該圖是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故不符合題意;
C.該圖不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故不符合題意;
D.該圖既是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故符合題意;
故選D.
4.某個(gè)正多邊形的一個(gè)內(nèi)角是它的外角的2倍,則該正多邊形是()
A.正方形B.正五邊形C.正六邊形D.正七邊
形
【答案】C
【解析】
【分析】本題主要考查了多邊形的內(nèi)角和與外角和的問(wèn)題.設(shè)這個(gè)多邊形的邊數(shù)是〃,根據(jù)
一個(gè)內(nèi)角是它的外角的2倍,可得該正多邊形內(nèi)角和是其外角和的2倍,據(jù)此列出方程,即
可求解.
【詳解】解:設(shè)這個(gè)多邊形的邊數(shù)是〃,
???一個(gè)內(nèi)角是它的外角的2倍,
...該正多邊形內(nèi)角和是其外角和的2倍,
???(〃-2)x1800=2x360。,
解得:n=6,
即這個(gè)多邊形是六邊形.
故選:C.
5.數(shù)軸上的三點(diǎn)A、B、C所表示的數(shù)分別為a、b、c且滿足。+人<0,則原點(diǎn)
在()
ABC
aSc
A.點(diǎn)A左側(cè)B.點(diǎn)人點(diǎn)8之間(不含點(diǎn)八點(diǎn)8)
C.點(diǎn)〃點(diǎn)C之間(不含點(diǎn)B點(diǎn)C)D.點(diǎn)C右側(cè)
【答案】C
【解析】
【分析】此題考查了數(shù)軸,有理數(shù)的加法運(yùn)算,乘法運(yùn)算的含義,熟練掌握各自的性質(zhì)是解
本題的關(guān)鍵.根據(jù)a+b<0,bc<3可得b,c異號(hào),從而得到原點(diǎn)的位置,
即可得解.
詳解】解:由圖可知,u<b<c,而a+Z?<0,bc<3
??a<b<O<c>
???原點(diǎn)在點(diǎn)8點(diǎn)。之間;
故選C
6.如圖,ABHCD,C£平分/AC。,Z1=70°,Z2度數(shù)為()
A.30°B.35°C,45°D.70°
【答案】B
【解析】
【分析】本題主要考查了平行線的性質(zhì),角平分線的定義,先根據(jù)“兩直線平行,同位角相
等”得NAC。,根據(jù)角平分線定義得/DCE,然后根據(jù)“兩直線平行,同位角相等”得
出答案.
【詳解】VAB/ICD,
:.?ACD?170?.
平分NACZ),
???ZPCE=-ZACD=35°.
2
VABHCD,
:.Z2=ZDCE=35°.
故選:B.
7.小明去商場(chǎng)購(gòu)物,購(gòu)買完后商家有一個(gè)抽獎(jiǎng)答謝活動(dòng),有加張獎(jiǎng)券,其中含獎(jiǎng)項(xiàng)的獎(jiǎng)券
有〃張,每名已購(gòu)物的顧客只能抽取一次,小明抽之前有10名顧客已經(jīng)抽過(guò)獎(jiǎng)券,中獎(jiǎng)的
有3人,則小明中獎(jiǎng)的概率為()
nn77-3
A.——B.----------D.-------
m團(tuán)一10m
【答案】c
【解析】
【分析】本題考查了簡(jiǎn)單的概率計(jì)算.熟練掌握簡(jiǎn)單的概率計(jì)算公式是解題的關(guān)鍵.
根據(jù)簡(jiǎn)單的概率計(jì)算公式求解作答即可.
【詳解】解:由題意知,小明中獎(jiǎng)的概率為上二
777-10
故選:C.
8.如圖所示,兩個(gè)體積不等的圓柱形水杯,大小水杯口均朝匕現(xiàn)往大水杯中均勻注水,
注水過(guò)程中小水杯始終在原來(lái)位置,設(shè)水面上升高度為/?,注水時(shí)間為人下列圖象能正確
反應(yīng)注水高度隨時(shí)間變化關(guān)系的是()
D.
【解析】
【分析】本題主要考查函數(shù)的定義以及函數(shù)圖象的識(shí)別.探究大水杯中水面上升高度力與注
水時(shí)間/之間的函數(shù)關(guān)系,從而確定圖象.
【詳解】解:開始往大水杯中均勻注水,〃的值由。逐漸增大,當(dāng)水漫過(guò)小水杯向小水杯注
水,此時(shí)分的值保持不變.小燒杯注滿后,水再次進(jìn)入大水杯中直至到大水杯頂部時(shí),〃的
再次增大,但變化比開始時(shí)變慢.
觀察四個(gè)圖象,選項(xiàng)C符合題怠.
故選:c.
二、填空題(本題共16分,每小題2分)
9.如果分式也口值為零,那么實(shí)數(shù)機(jī)的取值是.
【答案】-1
【解析】
【分析】本題考查了分式為零的條件.熟練掌握分式為零的條件是解題的關(guān)鍵.
由題意知,m+l=O,計(jì)算求解即可.
【詳解】解:???分式生?值為零,
m-\
m+\=0.
解得,〃?=T,
故答案為:-1.
10.如圖所示的網(wǎng)格是正方形網(wǎng)格,點(diǎn)A,B,C是網(wǎng)格線交點(diǎn),則sinA=
【答案】巫
2
【分析】本題考查了勾股定理與網(wǎng)格問(wèn)題,求正弦,連接4C,根據(jù)勾股定理的逆定理證明
是等腰直角三角形,進(jìn)而即可求解.
?)AB2+BC2=AC2
??.是等腰直角三角形,
,sinA喀二正
AC2
故答案為:旦
2
H.實(shí)數(shù)范圍內(nèi)進(jìn)行因式分解:/nr?-2m=
【答案】加卜+&)卜-&)
【解析】
【分析】本題考查的是利用提公因式與公式法分解因式,算術(shù)平方根的含義,先提取公因式,
再利用平方差公式分解因式即可.
【詳解】解:爾2-2加二加卜2-2)=〃21+&)(工一庭);
故答案為:"“卜力乂人一百).
12.如圖,A8是。。的直徑,或CD工AB于點(diǎn)E,AC=CD,如果AC=26則C。
的半徑長(zhǎng)為.
【答案】2
【解析】
【分析】本題考查的是等邊三角形的判定與性質(zhì),含30度角的直角三角形的性質(zhì),垂徑定
理的應(yīng)用,銳角三角函數(shù)的應(yīng)用,如圖,連接A。,。。,證明“3C為等邊三角形.再
進(jìn)一步解答即可.
【詳解】解:如圖,連接A。,OC,
:A區(qū)是。。的直徑,弦COJ_A8,
CE=DE,AC=AD,
???AC=CD,
???AC=CD=AD,
???為等邊三角形,
???/ACD=60°,ZCAE=9()。-60。=30°,
:,CE=-AC=>/3f
2
-OA=OC,
???ZOCA=ZOAC=30°,
???ZOCE=60°-30°=30°,
,8=工=總=2
??cos30°V3
2
故答案為:2
13.某函數(shù)圖象滿足過(guò)點(diǎn)(0,2),且當(dāng)x>0時(shí),),隨x的增大而增大,寫出一個(gè)滿足條件的
表達(dá)式.
【答案】y=J+2(答案不唯一)
【解析】
【分析】本題考查了二次函數(shù)的圖象性質(zhì)以及解析式,根據(jù)當(dāng)x>0時(shí),y隨x的增大而增大
且過(guò)點(diǎn)(0,2),則開口向上,對(duì)稱軸為x=0,據(jù)此寫出表達(dá)式,即可作答.
【詳解】解:???某函數(shù)圖象滿足過(guò)點(diǎn)(0,2),且當(dāng)x>0時(shí),),隨x的增大而增大
y=x2+2
故答案為:y=f+2(答案不唯一)
14.如圖,在平面直角坐標(biāo)系內(nèi),某圖象上的點(diǎn)A、8為整數(shù)點(diǎn),以點(diǎn)。為位似中心將該圖
像擴(kuò)大為原的2倍,則點(diǎn)A的坐標(biāo)為.
【答案】(-2,2)或(2,-2)##(2,-2)或(-2,2)
【解析】
【分析】本題考查的是位似變換、坐標(biāo)與圖形的性質(zhì),在平面直角坐標(biāo)系中,如果位似變換
是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于人或
根據(jù)位似變換的性質(zhì)計(jì)算即可.
【詳解】解:由題意得:A的坐標(biāo)為(一1x2,1x2)或(一1x(-2),1x(—2)),
???A的坐標(biāo)為(一2,2)或(2,-2),
故答案為:(一2,2)或(2,-2).
15.某校抽測(cè)了某班級(jí)的10名學(xué)生競(jìng)賽成績(jī)(均為整數(shù)),從低到高排序如下:4,/,/,
七,鼻,/,毛,4,/,為0,如果%=83,x7=86,該組數(shù)據(jù)的中位數(shù)是85,則/二
【答案】84或85
【解析】
【分析】本題考查了求中位數(shù),正確理解中位數(shù)的的定義是解題的關(guān)鍵.由中位數(shù)的定義可
知,土券二85,再根據(jù)%=83,X7=86,即可得出答案.
【詳解】由已知,10個(gè)成績(jī)從低到高排列,居中的兩個(gè)成績(jī)?yōu)槠吆?,且該組數(shù)據(jù)的中位
數(shù)是85,
.-.^^=85
2
vx4=83,x7=86,
/.x5=84,x6=86,或&=85,4=85,
故答案為:84或85.
16.“誰(shuí)知盤中餐,粒粒皆辛苦”知農(nóng)愛農(nóng),珍惜糧食,傳承美德,從校園做起.為響應(yīng)此
號(hào)召學(xué)校舉辦“減少舌尖上的浪費(fèi)”宣傳活動(dòng),參加活動(dòng)的共60人,其中有校領(lǐng)導(dǎo),教師
代表,七年級(jí)學(xué)生代表,八年級(jí)學(xué)生代表和九年級(jí)學(xué)生代表.已知校領(lǐng)導(dǎo)和教師代表的總?cè)?/p>
數(shù)是七年級(jí)學(xué)生.代表和八年級(jí)學(xué)生代表總?cè)藬?shù)的四分之一,校領(lǐng)導(dǎo)和七年級(jí)學(xué)生代表的總?cè)?/p>
數(shù)是教師代表和八年級(jí)學(xué)生代表總?cè)藬?shù)的七倍,則參加這次活動(dòng)的九年級(jí)學(xué)生代表有
人.
【答案】20
【解析】
【分析】設(shè)參加這次活動(dòng)的校領(lǐng)導(dǎo)有x人,教師代表有),人,七年級(jí)學(xué)生代表有z人,則參
加這次活動(dòng)的八年級(jí)學(xué)生代表有[4(x+),)-z]人,九年級(jí)學(xué)生代表有[60-5(1+),)]人,
根據(jù)校領(lǐng)導(dǎo)和七年級(jí)學(xué)生代表的總?cè)藬?shù)是教師代表和八年級(jí)學(xué)生代表總?cè)藬?shù)的七倍?,可列出
關(guān)于x,),,z的三元一次方程,變形后,可得出27(x+y)=8(z-y),結(jié)合x,y,z均為
正整數(shù)且27和8互質(zhì),可得出是8的倍數(shù),結(jié)合九年級(jí)學(xué)生代表人數(shù)為正,可確定
x+),=8,再將其代入60-5(x+y)中,即可求出結(jié)論.
【詳解】解:設(shè)參加這次活動(dòng)的校領(lǐng)導(dǎo)有x人,教師代表有),人,七年級(jí)學(xué)生代表有z人,
則參加這次活動(dòng)的八年級(jí)學(xué)生代表有[4(/+y)-z]人,九年級(jí)學(xué)生代表有
[60_5(x+y)]人,
根據(jù)題意得:x+z=7[y+4(x+y)-z],
整理得:27x+35y=8z,
/.27(x+y)=8(z-y)?
??",y,z均為正整數(shù),且27和8互質(zhì),
??.x+),是8的倍數(shù),
又,:60-5(x+y)>0,
x+yv12,
x+y=8,
/.60-5(x+y)=60-5x8=20(人),
???參加這次活動(dòng)的九年級(jí)學(xué)生代表有20人.
故答案為:20.
三、解答題(本題共68分,第17?21題每小題5分,第22?24題每小題6分,
第25題5分,第26題6分,第27?28題每小題7分)解答應(yīng)寫出文字說(shuō)明、
證明過(guò)程或演算步驟.
17.計(jì)算:*-2卜(4+202iy+2sin6()o+(g).
【答案】5
【解析】
【分析】本題考查了含特殊角的三角函數(shù)值的實(shí)數(shù)的混合運(yùn)算,根據(jù)相應(yīng)的運(yùn)算法則計(jì)算即
可.
【詳解】|百一4一(4+2()21)°+2sin6()o+
=2->/3-1+>/3+4
=5.
18.解分式方程」——^-=1
工+1x-1
【答案】x=-5
【解析】
【分析】本題考查了解分式方程,正確掌握解分式方程的法則及步驟是解題的關(guān)鍵.將分式
方程去分母化為整式方程,解整式方程求出解并檢驗(yàn)即可.
【詳解】解:———£-二1,
方程兩邊乘以(x+l)(x-l)得:-¥(-V-1)-6=(X+1)(X-1),
去括號(hào);X2-%-6-X2-1,
移項(xiàng):x2-x2-x=-l+6?
合并同類項(xiàng):-x=5,
系數(shù)化1:x=-5.
經(jīng)檢驗(yàn):工=一5是原方程的解.
「?原方程的解是x=-5.
⑼已知…一k°,求8含7小+)')的值.
x-2y1
【答案】一5
【解析】
【分析】本題考查分式化簡(jiǎn)求值問(wèn)題,先通分,計(jì)算括號(hào)里的,再除法轉(zhuǎn)化成乘法,”算括
號(hào)外的,最后把工=>'的值代入計(jì)算即可.
x—2V
【詳解】解:工77(9)
x-2y
.(f)
(f)2
工一2),
y
x-y=O,
J原式二士二1二—1
x+x2
20.如圖,小明在拼圖時(shí),發(fā)現(xiàn)8個(gè)一樣的小長(zhǎng)方形恰好可以拼成一個(gè)邊長(zhǎng)為22的正方形,
但是中間留了個(gè)洞,恰好是邊長(zhǎng)為2的小正方形,求每個(gè)小長(zhǎng)方形的長(zhǎng)和寬.
【答案】每個(gè)小長(zhǎng)方形的長(zhǎng)為10,寬為6
【解析】
【分析1本題主要考查了二元一次方程組的應(yīng)用,設(shè)小長(zhǎng)方形的長(zhǎng)和寬,根據(jù)I個(gè)長(zhǎng)加上2
個(gè)寬等于22,2個(gè)寬減去1個(gè)長(zhǎng)等于2列出方程組,再求出解即可.
【詳解】解:設(shè)小長(zhǎng)方形的長(zhǎng)為x,寬為y,根據(jù)題意可得
x+2y=22
2y-x=2'
fx=10
解得:《,,
[y=6
???每個(gè)小長(zhǎng)方形的長(zhǎng)為10,寬為6.
21.已知:如圖,在YA8CD中,過(guò)點(diǎn)。作于E,點(diǎn)尸在邊CO上,DF=BE,
連接A尸和斯.
(1)求證:四邊形4FDE是矩形;
4
(2)如果AF平分N946,6F=4,sinC=-,求的長(zhǎng).
【答案】(1)見解析(2)8
【解析】
【分析】本題考查了平行四邊形的性質(zhì),矩形的性質(zhì)和判定,正弦;
(1)先求出四邊形是平行四邊形,再根據(jù)矩形的判定推出即可;
4
(2)利用sinC二一求出3c=5,由勾股定理求出CT=3,再證明AO=OF=8C,即
5
可得出答案.
【小問(wèn)1詳解】
〈YABCD,
???AB//CD,
:?DF〃BE,
?:Dk=BE,
,四邊形因?yàn)槠叫兴倪呅?
:DEJ.AB,
.-.ZDEB=90o,
???四邊形BFDE為矩形;
【小問(wèn)2詳解】
由(1)可得四邊形84無(wú)為矩形,
???NMC=90。,
4BF
在Rl^ABC中,BF=4,sinC=-=—,
5BC
BC=5,
由勾股定理得R7=3,
???四邊形ABC。是平行四邊形,
,AD=BC=5,
???AE平分/DAB,
^ZDAF=ZFAB.
乂???AB//CD,
:,ADFA=4FAB,
,ZDAF=NDFA=NFAB,
:.DF=AD=5,
:,DC=DF+FC=S.
22.在平面直角坐標(biāo)系xO),中,反比例函數(shù)),=4女=0)的圖象過(guò)點(diǎn)A(l,l).
.AT
(1)求人的值;
L
(2)一次函數(shù)y=av+〃(awO)的圖象過(guò)4(0,3),與y=一(工>0)的圖象交于兩點(diǎn),兩
人
函數(shù)圖象交點(diǎn)之間的部分組成的封閉圖形稱作圖象“G”,該圖象內(nèi)橫縱坐標(biāo)均為整數(shù)的
點(diǎn)稱為“G區(qū)域點(diǎn)”(不含邊界);
①當(dāng)一次函數(shù)圖象過(guò)(3,1)時(shí),存在個(gè)“G區(qū)域點(diǎn)”;
②如果“G區(qū)域點(diǎn)”的個(gè)數(shù)為3個(gè),畫出示意圖,直接寫出。的取值范圍.
【答案】(1)攵=1
21
(2)①2個(gè);②見解析,一一一一
32
【解析】
【分析】本題主要考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題等知識(shí)點(diǎn),
⑴把4(1,1)代入y=與2A0)中可得攵的值;
X
2
(2)①將(3,1)代入),=仆+3可得:直線解析式為>=-4/+3,畫圖可得結(jié)論:②畫圖
計(jì)算邊界時(shí)。的值,即可得解;
熟練掌握整點(diǎn)的定義,并利用數(shù)形結(jié)合的思想是解決此題的關(guān)鍵.
【小問(wèn)I詳解】
???反比例函數(shù)y=&(左。0)的圖象過(guò)點(diǎn)4(1,1),
X
/.X;=1x1=];
??4的值為1;
【小問(wèn)2詳解】
①一次函數(shù)),=依+人(。w0)的圖象過(guò)(0,3),(3,1),
b=3k=--
???1,,J解得〈3,
3k+b=\,
[b=o3
2
???直線/的解析式為y=--x+3,
畫出圖形,如圖所示,
故存在2個(gè)“G區(qū)域點(diǎn)”;
故答案為:2;
②如圖,直線/:),=依+3過(guò)(3,1)時(shí),1=3。+3,
解得〃二-上
3
J4
直線/:)=辦+3過(guò)(4,1)時(shí),1=4。+3,
解得。二一!,
2
觀察圖象可知:“G區(qū)域點(diǎn)”的個(gè)數(shù)為3個(gè)時(shí),〃的取值范圍是一2<。<一_1.
32
23.啦啦操是一項(xiàng)展現(xiàn)青春活力的運(yùn)動(dòng)項(xiàng)目,北京市多所學(xué)校都選擇以啦啦操為載體,讓更
多的學(xué)生在訓(xùn)練的過(guò)程中收獲了健康與快樂(lè).某校啦啦操學(xué)員共16名,測(cè)量并獲取了所有
學(xué)員的身高(單位:cm),數(shù)據(jù)整理如下:
a.16名學(xué)生的身高:
153153157158159160160161
164164164164167169169169
近16名學(xué)生的身高的平均數(shù)、中位數(shù)、眾數(shù):
平均數(shù)中位數(shù)眾數(shù)
161.94mn
(1)寫出表中m,〃的值;
(2)教練將學(xué)員分組進(jìn)行PK賽,如果一組學(xué)員的身高的方差越小,則認(rèn)為該舞臺(tái)呈現(xiàn)效
果越好,據(jù)此推斷:下列兩組學(xué)員中,舞臺(tái)呈現(xiàn)效果更好的是_____(填“A組”或“8組”);
4組學(xué)員的身高157158159160161
8組學(xué)員的身高161164164164167
(3)該啦啦操隊(duì)要選五名學(xué)生,已確定三名學(xué)員參賽,她們的身高分別為:160,160,164,
32
她們的身高的方差為勺.在選另外兩名學(xué)員時(shí),首先要求所選的兩名學(xué)員與已確定的三名
32
學(xué)員所組成的五名學(xué)員的身高的方差小于玄,其次要求所選的兩名學(xué)員與己確定的三名學(xué)
員所組成的五名學(xué)員的身高的平均數(shù)盡可能的大,則選出的另外兩名學(xué)員的身高分別為
【答案】(1)m=162.5,1=164
(2)A組(3)161,164
【解析】
【分析】(1)根據(jù)中位數(shù)和眾數(shù)的定義求解即可;
(2)計(jì)算每一組的方差,根據(jù)方差越小數(shù)據(jù)越穩(wěn)定進(jìn)行判斷即可;
32
(3)根據(jù)要求,身高的平均數(shù)盡可能大且方差小于勺,結(jié)合其余學(xué)生的身高即可做出選
擇.
【小問(wèn)I詳解】
解:將這組數(shù)據(jù)按照從小到大的順序排列為:153,153,157,158,159,160,160,
161,164,164,164,164,167,169,169,169,
出現(xiàn)次數(shù)最多的數(shù)是164,出現(xiàn)了4次,即眾數(shù)〃=164,
16個(gè)數(shù)據(jù)中的第8和第9個(gè)數(shù)據(jù)分別是161,164,
161+164
:.中位數(shù)〃2=162.5,
~2~
/n=166?n=165;
【小問(wèn)2詳解】
解:A組身高的平均數(shù)為g(157+158+159+160+161)=159,
A組身高的方差為
1[(157-159)2+(158-159)2+(159-159)2+(160-159)2+(161-159)2]=2
8組身高的平均數(shù)為[(161+164+164+164+167)=164,
3組身高的方差為,[(⑹—164)2+3(164—164『+(167—164)1二3.6,
5
V3.6>2
???舞臺(tái)呈現(xiàn)效果更好的是4組,
故答案為:A組;
【小問(wèn)3詳解】
解:160.160,164的平均數(shù)為;(160+160+164)=161:
32
???所選的兩名學(xué)生與已確定的三名學(xué)生所組成的五名學(xué)生的身高的方差小于右,
???數(shù)據(jù)的差別較小,數(shù)據(jù)才穩(wěn)定,
可供選擇的有:161,164,
且選擇161,164時(shí),平均數(shù)會(huì)增大,
故答案為:161,164.
【點(diǎn)睛】本題考查了平均數(shù)、眾數(shù)、中位數(shù)和方差,熟記方差的計(jì)算公式以及方差的意義:
方差越小數(shù)據(jù)越穩(wěn)定是解題的關(guān)鍵.
24.如圖,AB是00的直徑,AC切0。于點(diǎn)4,連接3c交。0于點(diǎn)。,AC=CF,
連接A尸并延長(zhǎng)交0。于點(diǎn)E,連接AO.
(1)求證:ZEBD=ZEAB;
(2)若A8=4,CF=3,求A方的值.
【答案】(1〉見解折(2)逑
5
【解析】
【分析】(I)由是C。的直徑得到NAE8=90。,即NEBD+NEFB=90。,由AC是
切線得到ZG4B=90°,即ZCAF+ZEAB=90°,由AC=CF得到
ZCAF=ZCFA=ZBFE,從而得證N石3£>=NEA8;
(2)連接A。,在RtZ^ABC中,根據(jù)勾股定理求得BC=5,根據(jù)三角形的面積公式有
[1]GT~\A「
568=7°48=703?4。,求得4。二一,根據(jù)A。06/\08,得到~二三7,
225CABC
96
從而求得8=彳,DF=-,在Rt」4£)b中,根據(jù)勾股定理即可求得A尸.
55
【小問(wèn)I詳解】
證明:???A8是GO的直徑,
ZAEB=9Qc,
;./EBD+/EFB=90。,
???AC切。。于點(diǎn)A,
/.ZMC=90%
ZCAF+ZEAB=90°
vAC=CF,
/.ZCAF=Z.CFA,
?;NEFB=NCFA,
.\ZEBD=ZEAB
【小問(wèn)2詳解】
解:連接A力,
,在RtZ\A8C中,BC=jAB,+AC?=次+蝮=5,
AA是CO的直徑.
ZADB=90°,
由(1)可得NCW=90。,
S.?=-CAAB=-CBAD
aCr/iO22
:.CAAB=CBAD
,3x4=5AD
z.AD=—,
5
???4=",ZC4D=ZCm=90°,
.CDAC_CD3
??--=----,即u----=-
CABC35
/.CD=2,
96
:.DF,=CF-CD=AC-CD=3一一=-
55
6x/5
???在RLA力/中,AF=\lAD2+DF2==
亨
【點(diǎn)睛】本題考查切線的性質(zhì),直徑所對(duì)的圓周角為直角,等腰三角形的性質(zhì),勾股定理,
相似三角形的判定及性質(zhì),綜合運(yùn)用相關(guān)知識(shí)是解題的關(guān)犍.
25.醫(yī)學(xué)院某藥物研究所研發(fā)了甲,乙兩種新藥,據(jù)監(jiān)測(cè),如果成人按規(guī)定的劑量服用,服
藥后的時(shí)間x(小時(shí)),服用甲種藥物后每亳升血液中的含藥量力(微克),服用乙種藥物后
每亳升血液中的含藥量力(微克),記錄部分實(shí)驗(yàn)數(shù)據(jù)如下:
X00.200.401.001.532.262.523.384.535.44???
00.681.363.403.212.772.652.311.921.65?-?
為00.180.369.005.032.261.700.660.190.07???
對(duì)以上數(shù)據(jù)進(jìn)行分析,補(bǔ)充完成以下內(nèi)容.
(1)可以用函數(shù)刻畫M與X,乃與X之間的關(guān)系,在同一平面直角坐標(biāo)系X。),中,已經(jīng)畫
出X與x的函數(shù)圖象,請(qǐng)畫出出與x的函數(shù)圖象;
(2)如果兩位病人在同一時(shí)刻分別服用這兩種藥物,服藥1小時(shí)后兩位病人每亳升血液中
含藥量相差______微克;兩位病人大約服藥后小時(shí)每亳升血液中含藥量相等;(結(jié)果
保留小數(shù)點(diǎn)后一位)
(3)據(jù)測(cè)定,每亳升血液中含藥量不少于2微克時(shí)對(duì)治療疾病有效,則兩種藥物中
種藥的藥效持續(xù)時(shí)間較長(zhǎng),藥效大約相差小時(shí)(結(jié)果保留小數(shù)點(diǎn)后一位).
【答案】(1)見解析⑵5.6;0.5或2.1
(3)甲,1.5
【解析】
【分析】本題考查了函數(shù)的應(yīng)用,仔細(xì)觀察圖象,準(zhǔn)確獲取信息是解題的關(guān)鍵.
(1)先根據(jù)對(duì)應(yīng)x和%的值在圖上描點(diǎn),然后用光滑的曲線連接即可;
(2)觀察圖象,分別求出當(dāng)x=l時(shí),X、4的值,然后求出力、力的差即可;當(dāng)每毫
升血液中含藥量相等時(shí),即弘=力,力、外交點(diǎn)所對(duì)應(yīng)的人.即為兩位病人大約服藥時(shí)間;
(3)求出當(dāng)),=2時(shí),兩個(gè)函數(shù)圖像與),=2交點(diǎn)的橫坐標(biāo),即可求出每亳升血液中含藥量
不少于2微克的時(shí)間,然后比較大小即可.
【小問(wèn)1詳解】
解:如圖,根據(jù)對(duì)應(yīng)x和力的值在圖上描點(diǎn),然后用光滑的曲線連接即可.
【小問(wèn)2詳解】
>
x
解:當(dāng)x=l時(shí),在圖象時(shí)找到X=3.4,必=9,
y2-yx=9-3.4=5.6,
當(dāng)每亳升血液中含藥量相等時(shí),即,二內(nèi),在圖象上找到X、外交點(diǎn)所對(duì)應(yīng)的x即為兩位
病人大約服藥時(shí)間,即x的值約為0.5或2.1,
故答案為:5.6;0.5或2.1;
【小問(wèn)3詳解】
解:當(dāng))=2時(shí),/所對(duì)應(yīng)的x的值約為0.7,4,
???甲種藥物持續(xù)的時(shí)間為4—0.7=3.3
同理乙種藥物持續(xù)的時(shí)間為2.5—0.7=1.8,
??,33—1.8=1.5,
???每亳升血液中含藥量不少于2微克時(shí)對(duì)治療疾病有效,則兩種藥物中甲種藥的藥效持續(xù)時(shí)
間較長(zhǎng),藥效大約相差1.5小時(shí),
故答案為:甲,L5.
1
26.在平面直角坐標(biāo)系xOy中,拋物線y=ad+/?x+c的經(jīng)過(guò)點(diǎn)A0,—,將點(diǎn)人向左平
Ia
移4個(gè)單位長(zhǎng)度,得到點(diǎn)B,點(diǎn)B在拋物線上.
Ox
(1)求拋物線的對(duì)稱軸;
(2)點(diǎn)B縱坐標(biāo)為—3時(shí),求。的值;
(3)已知點(diǎn)1,^}N(Y,-3).若拋物線與線段MN恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖
象,求。取值范圍.
【答案】⑴了二-2
(2)a=
3
(3)4?」且4H0
3
【解析】
【分析】本題考查二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)圖象上點(diǎn)的特征,數(shù)形結(jié)合討
論交點(diǎn)是解題的關(guān)鍵.
(1)根據(jù)平移先得出根據(jù)A]。,,]、的縱坐標(biāo)相等,即可得拋物
kci)\ci)\a)
線對(duì)稱軸;
(2)將“的縱坐標(biāo)為-3代入求出即可;
⑶根據(jù)川0,"(一三個(gè)點(diǎn)的縱坐標(biāo)都為L(zhǎng)可知點(diǎn)MJI2]
\a)\a)a\a)
必定在拋物線“U型”的內(nèi)部,再根據(jù)N(T,-3),的橫坐標(biāo)相同,可得點(diǎn)
N(T,—3)在點(diǎn)的正上方或者正下方,分當(dāng)。>0時(shí)和當(dāng)。<0時(shí)兩種情況討論,
畫出圖象,數(shù)形結(jié)合即可作答.
【小問(wèn)1詳解】
解:???將拋物線上點(diǎn)A(0,向左平移4個(gè)單位長(zhǎng)度,得到點(diǎn)從
???點(diǎn)W在拋物線上,
-4+()
,拋物線對(duì)稱軸為:x=-----=-2.
2
【小問(wèn)2詳解】
丁點(diǎn)的縱坐標(biāo)為-3,
/.-=—3,
a
1
a=——.
3
【小問(wèn)3詳解】
由題意得:拋物線的對(duì)稱軸為直線4=-3=-2,
2a
三個(gè)點(diǎn)的縱坐標(biāo)都為工,
IciJkciJ<aJa
(1、
???可知點(diǎn)例-i,-必定在拋物線“U型”的內(nèi)部,
I
又???N(T—3),4,g)的橫坐標(biāo)相同,
???點(diǎn)N(T,—3)在點(diǎn),-4-]的正上方或者正下方,
\a)
分情況討論:
1
當(dāng)a>0時(shí),->0,此時(shí)點(diǎn)在第二象限,
a
,?,八(<—3)在第三象限,點(diǎn)加(一1,\
必定在拋物線“U型”的內(nèi)部,
???點(diǎn)N在點(diǎn)B的正下方,
結(jié)合圖象有:拋物線與線段MV恰有一個(gè)公共點(diǎn),
則。>0符合要求;
當(dāng)〃<0時(shí),<0,此時(shí)點(diǎn)在第三象限,
Ia)
由圖可知:當(dāng)點(diǎn)N(Y,—3)與點(diǎn)3,4,重合或者在點(diǎn)4,:)的正上方時(shí),拋物線與
線段MN恰有一個(gè)公共點(diǎn),
-W—3,
a
解得:a>——,
3
BP:一:4。<()時(shí),拋物線與線段MN恰有一個(gè)公共點(diǎn),
綜上所述,。的取值范圍為。2且。工0.
3
27.在乂8c中,AB=AC,NB4C=45°,。。_148于點(diǎn)。,點(diǎn)E,產(chǎn)分別在AGBC
上,且NCE/=1/B4C,EF,C。交于點(diǎn)N.
2
圖1圖2
EN
(1)如圖1,當(dāng)點(diǎn)七與點(diǎn)A重合時(shí),—=______;
CF
(2)如圖2,當(dāng)點(diǎn)E在/。邊上時(shí),
①依題意補(bǔ)全圖2;
EN
②k的值是否發(fā)生變化,請(qǐng)說(shuō)明理由.
CF
EN
【答案】(1)2(2)①見解析;②寸的值不變,理由見解析
CF
【解析】
【分析】本題主要考查了等腰三角形的性質(zhì)與判定,全等三角形的性質(zhì)與判定:
(1)先由三線合一定理得到BC=2CF,再證明△ADC是等腰直角三角形,
ZADC=ZBDC=90°,得到4)=CO,進(jìn)而證明aBOg二NDA(ASA),得到
AN=BC=2CF,即EN=2C/,據(jù)此可得答案;
(2)①根據(jù)題意作圖即可;②如圖所示,過(guò)點(diǎn)E作£M_LCD,分別交CDBC與G、M,
證明A6〃£M,得到N5AC=NCEM,NEMC=NABC=NECM,則EM=EC,
IEN
再證明NCE尸二一NCEM,同(I)可證明EN=2CF,則一=2
2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高空考古挖掘服務(wù)合同
- 聯(lián)排別墅酒店租賃合同范本
- 高速公路土方施工合同范本
- 花卉市場(chǎng)租賃合同水電費(fèi)
- 電力工程改造合同范本
- 小學(xué)節(jié)能改造施工合同
- 冶金工程中標(biāo)合作協(xié)議
- 礦山設(shè)備廠房施工合同
- 演出票務(wù)租賃合同
- 古城墻遺址修復(fù)工程合同
- GB/T 4208-2017外殼防護(hù)等級(jí)(IP代碼)
- GB/T 10836-2021船用多功能焚燒爐
- 部編版五年級(jí)語(yǔ)文上冊(cè)第八單元主題閱讀含答案
- 結(jié)直腸癌中西醫(yī)結(jié)合治療總論
- 第23課《范進(jìn)中舉》課件(共27張PPT) 部編版語(yǔ)文九年級(jí)上冊(cè)
- 宋曉峰小品《宋鏢傳奇》劇本臺(tái)詞手稿
- 高考作文專題之?dāng)M標(biāo)題課件
- DB31T 634-2020 電動(dòng)乘用車運(yùn)行安全和維護(hù)保障技術(shù)規(guī)范
- 商業(yè)綜合體項(xiàng)目建設(shè)成本及經(jīng)營(yíng)測(cè)算(自動(dòng)計(jì)算)
- 尋覓沉睡的寶船 南海一號(hào) 華光礁一號(hào)
- 中藥材及飲片性狀鑒別1總結(jié)課件
評(píng)論
0/150
提交評(píng)論