版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
清單04基本平面圖形(12個考點梳理+題型解讀+提升訓練)
【清單01】直線、射線與線段
1.直線、射線與線段的概念注意:直線是可以向兩邊無限延伸的,射線受端點的限制,只能向一邊無限延伸;線段不能延伸,所以直線與射線不可測量長度,只有線段可以測量2.基本事實(1)經(jīng)過兩點有一條直線,并且僅有一條直線,即兩點確定一條直線(2)兩點之間的線段中,線段最短,簡稱兩點間線段最短3.線段的性質兩點之間的線段中,線段最短,簡稱:兩點間線段最短。4.基本概念(1)兩點間的距離:兩個端點之間的長度叫做兩點間的距離。(2)線段的等分點:把一條線段平均分成兩份的點,叫做這個線段的中點5.雙中點模型:C為AB上任意一點,M、N分別為AC、BC中點,則
【清單02】角的概念1.角的定義:(1)定義一:有公共端點的兩條射線組成的圖形叫做角,這個公共端點是角的頂點,這兩條射線是角的兩條邊.如圖1所示,角的頂點是點O,邊是射線OA、OB.圖2圖1圖2圖1(2)定義二:一條射線繞著它的端點旋轉而形成的圖形,射線旋轉時經(jīng)過的平面部分是角的內(nèi)部.如圖2所示,射線OA繞它的端點O旋轉到OB的位置時,形成的圖形叫做角,起始位置OA是角的始邊,終止位置OB是角的終邊.注意:(1)兩條射線有公共端點,即角的頂點;角的邊是射線;角的大小與角的兩邊的長短無關.(2)平角與周角:如圖1所示射線OA繞點O旋轉,當終止位置OB和起始位置OA成一條直線時,所形成的角叫做平角,如圖2所示繼續(xù)旋轉,OB和OA重合時,所形成的角叫做周角.2.角的表示法:角的幾何符號用“∠”表示,角的表示法通常有以下四種:注意:用數(shù)字或小寫希臘字母表示角時,要在靠近角的頂點處加上弧線,且注上阿拉伯數(shù)字或小寫希臘字母.3.角的畫法(1)用三角板可以畫出30°、45°、60°、90°等特殊角.(2)用量角器可以畫出任意給定度數(shù)的角.(3)利用尺規(guī)作圖可以畫一個角等于已知角.【清單03】多邊形
1.多邊形的定義多邊形概念:在平面內(nèi),由一些線段首位順次相接組成的圖形叫做多邊形。(2)正多邊形概念:各個角都相等,各條邊都相等的多邊形叫做正多邊形
2.多邊形的對角線n邊形一個頂點的對角線數(shù):n-3;n邊形的對角線總數(shù):3.截角問題n邊形截去一個角后得到n/n-1/n-2邊形【清單04】圓1.圓的定義及性質圓的定義:在一個平面內(nèi),線段OA繞它固定的一個備注:圓心確定圓的位置,半徑長端點O旋轉一周,另一個端點A所形成的圖形叫圓。這個固定的端點O叫做圓心,線段OA叫做半徑。圓的表示方法:以O點為圓心的圓記作⊙O,讀作圓O。圓的特點:在一個平面內(nèi),所有到一個定點的距離等于定長的點組成的圖形。確定圓的條件:1)圓心;2)半徑。度確定圓的大小?!狙a充】1)圓心相同且半徑相等的圓叫做同圓;2)圓心相同,半徑不相等的兩個圓叫做同心圓;3)半徑相等的圓叫做等圓。圓的對稱性:1)圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸;圓是以圓心為對稱中心的中心對稱圖形。2.圓的有關概念弦的概念:連結圓上任意兩點的線段叫做弦(例如:右圖中的AB)。直徑的概念:經(jīng)過圓心的弦叫做直徑(例如:右圖中的CD)。備注:1)直徑是同一圓中最長的弦。2)直徑長度等于半徑長度的2倍?;〉母拍睿簣A上任意兩點間的部分叫做圓弧,簡稱弧。以A、B為端點的弧記作AB,讀作圓弧AB或弧AB。等弧的概念:在同圓或等圓中,能夠互相重合的弧叫做等弧。半圓的概念:圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫做半圓。優(yōu)弧的概念:在一個圓中大于半圓的弧叫做優(yōu)弧。劣弧的概念:小于半圓的弧叫做劣弧。知識點6:圓心角的概念圓心角概念:頂點在圓心的角叫做圓心角。弧、弦、弦心距、圓心角之間的關系定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應的其余各組量分別相等?!究键c題型一】直線﹑射線和線段
【典例1】下列說法正確的是(
)A.點O在線段AB上 B.點B是直線AB的一個端點C.射線OB和射線AB是同一條射線 D.圖中共有3條線段【變式1-1】下列說法錯誤的是(
)A.直線AB和直線BA是同一條直線 B.兩點之間,直線最短C.射線AB和射線BA不是同一射線 D.兩點確定一條直線【變式1-2】下列幾何圖形與相應語言描述相符的有(
)
①直線a、b相交于點A;②射線CD與線段AB沒有公共點;③延長線段AB;④直線MN經(jīng)過點A.A.1個 B.2個 C.3個 D.4個【變式1-3】如圖,下列表述不正確的是(
)
A.直線AC和直線BC相交于點CB.點D在直線AB外C.線段BD和射線AC都是直線CD的一部分D.直線BD不經(jīng)過點A【考點題型二】直線和線段的性質【典例2】下面兩個生活中的現(xiàn)象,用數(shù)學知識解釋是(
)A.兩點之間,線段最短B.兩點確定一條直線C.現(xiàn)象1:兩點之間,線段最短;現(xiàn)象2:兩點確定一條直線D.現(xiàn)象1:兩點確定一條直線;現(xiàn)象2:兩點之間,線段最短【變式2-1】在下列現(xiàn)象中,體現(xiàn)了數(shù)學原理“兩點確定一條直線”的是(填序號).【變式2-2】期中考試布置教室時,老師總是先把每一列最前和最后的課桌擺好,然后再依次擺中間的課桌,很容易就整整齊齊了.這其中蘊含的數(shù)學道理是.【變式2-3】墨斗被認為是“百作手藝祖師爺”魯班的發(fā)明,是木匠用來彈、放各種線記的重要工具,以其“繩之以墨”的功能成為了文人墨客心中正直的化身.如圖,經(jīng)過刨平的木板上的兩個點,能彈出一條筆直的墨線,而且只能彈出一條墨線,能解釋這一實際應用的數(shù)學知識是.【考點題型三】線段和與差運算
【典例3】線段AB長7cm,在直線AB上畫長為2cm的線段BC,則線段AC的長為(A.9cm B.5cm C.2cm或7cm 【變式3-1】在直線l上順次取三點A、B、C,使線段AB=8cm,BC=3cm,則線段AC的長為(A.5cm B.8cm C.10cm【變式3-2】如圖,已知B,C兩點把線段AD分成2:5:3三部分,M為AD的中點,BM=6cm,求CM【考點題型三】線段中點運算
【典例3】如圖,線段AB=24.C是線段AB的中點,D是線段BC的中點.(1)求線段AD的長;(2)在線段AD上有一點E,滿足CE=16BC【變式3-1】如圖,點C是線段AB上一點,D為BC的中點,且AB=10cm,BD=4cm.若點E在直線AB上,且AE=3cm,則A.3cm B.13cm C.2cm或13cm D.3cm或9cm【變式3-2】有兩根木條,一根AB長為80cm,另一根CD長為130cm,在它們的中點處各有一個小圓孔M、N(圓孔直徑忽略不計,M、N抽象成兩個點),將它們的一端重合,放置在同一條直線上,此時兩根木條的小圓孔之間的距離MN是(A.105cm B.C.105cm或25cm【變式3-3】已知A、B、C、D四個點在同一條直線上,BC=13AB,D為AB的中點,且BD=1cm,則【變式3-4】如圖,點C是線段AB上的一點,點M是線段AC的中點,點N是線段BC的中點.(1)如果AB=12cm,AM=5cm,求(2)如果MN=8cm,求AB【考點題型四】角度制單位換算【典例4】用度來表示22°23′【變式4-1】計算:23°24【變式4-2】131°28′【變式4-3】若∠A=20°19′,∠B=20°15′30″,∠C=20.25°,則(A.∠A>∠B>∠C B.∠B>∠A>∠CC.∠A>∠C>∠B D.∠C>∠A>∠B【考點題型五】方位角
【典例5】如圖,∠AOB是直角,則射線OB表示的方向是()A.南偏西55° B.南偏東55° C.北偏西35° D.北偏東35°【變式5-1】如圖,一艘船在A處遇險后向相距50nmile位于B處的救生船報警,A處相對于B處的位置,下列描述最準確的是(
A.距救生船50nmile處 B.南偏西30°方向上的50nmile處C.北偏東60°方向上 D.北偏東60°方向上的50nmile處【變式5-2】如圖,點A,B,C分別表示學校、小明家、超市,已知學校在小明家的北偏東42°方向上,且∠ABC=90°,則超市在小明家的()A.北偏西48°方向上 B.北偏西42°方向上C.南偏西48°方向上 D.南偏東42°方向上【變式5-3】如圖,已知輪船A在燈塔P的北偏東30°30'方向,輪船B在燈塔P的南偏東70°20′方向,則【考點題型六】鐘面角
【典例6】如圖,在下午四點半的時候,時針和分針所夾的銳角度數(shù)是(
)A.75° B.60° C.45° D.30°【變式6-1】在8:20這一時刻,時鐘上的分針與時針之間的夾角為(
)A.120° B.130° C.140° D.150°【變式6-2】如圖所示,鐘表上顯示的時間是10時10分,此時,時針和分針的夾角的度數(shù)是(
)A.100° B.105° C.115° D.120°【變式6-3】如圖是一個鐘面,上午8時正的時針和分針位置如圖所示,則分針和時針所成角的度數(shù)是.【考點題型七】余角和補角
【典例7】若∠A=52°,則∠A的補角的度數(shù)為(
).A.48° B.208° C.128° D.38°【變式7-1】若∠1和∠2互余,∠1與∠3互補,∠3=110°,則∠1與∠2的度數(shù)分別為()A.50°、40° B.70°、20° C.50°、130° D.70°、110°【變式7-2】有一個角的補角為117°,則這個角的余角是°.【變式7-3】若∠A=23°10′,則∠A的余角為【考點題型八】角分線的定義及簡單運算
【典例8】已知:點O為直線AB上一點,過點O作射線OC,∠BOC=110°.(1)如圖1,求∠AOC的度數(shù);(2)如圖2,過點O作射線OD,使∠COD=90°,作∠AOC的平分線OM,求∠MOD的度數(shù);(3)如圖3,在(2)的條件下,作射線OP,若∠BOP與∠AOM互余,求∠COP的度數(shù).【變式8-1】已知∠AOB=60°,∠AOC=13∠AOB,射線OD平分∠BOC,則【變式8-2】如圖,∠AOB是平角,OC是射線,OD、OE分別是∠AOC、∠BOC的平分線,若∠COE=28°,則∠AOD的度數(shù)為.【變式8-3】如圖,OB,OE是∠AOC內(nèi)的兩條射線,OD平分∠AOB,且∠COE=2∠BOE.若∠AOD=15°,∠AOC=120°,求∠DOE的度數(shù).【考點題型九】三角板中角度計算問題
【典例9】一副三角板按如圖放置,其中∠CAB=∠DAE=90°,∠B=45°,∠D=30°,若∠CAD=155°,則∠1的度數(shù)是(
)A.20° B.25° C.35° D.45°【變式9-1】如圖,將一副直角三角板疊在一起,使直角頂點重合于點O,則∠AOB+∠DOC=°.【變式9-2】把一副三角尺按如圖所示拼在一起,其中B,C,D三點在同一直線上,CM平分∠ACB,CN平分∠DCE,則∠MCN=.【變式9-3】如圖,將一副三角尺疊放在一起.(1)若∠CAE=58°,求∠BAE的度數(shù);(2)若∠CAE=2∠BAD,求∠CAD的度數(shù).【考點題型十】作線段(尺規(guī)作圖)【典例10】如圖,已知四點A、B、C、D,請按要求作圖并解答.
(1)按要求作圖:①作射線AB;②連接BD;③在射線AB上截取AM,使AM=DB;④在線段BD上取點P,使PA+PC的值最??;(2)小明同學根據(jù)圖形寫出了四個結論:①圖中有8條線段;②點B在線段DP的延長線上;③射線AB和射線AM是兩條射線;④點M在射線AB的延長線上;其中正確的結論是_________.【變式10-1】如圖所示,已知A,B,C,D四點在同一平面內(nèi),請根據(jù)下列要求畫圖(不寫作法,保留作圖痕跡).
(1)作線段AB、射線AD、直線BC;(2)在射線AD上作線段DE=AD;(3)連接CE,在四邊形ABCE內(nèi)求作一點O,使得OA+OB+OC+OE最?。咀兪?0-2】如圖,C為線段AB的中點,D在線段CB上,且DA=6,(1)畫出線段2AC?BD(尺規(guī)作圖)(2)求線段AB、CD的長.【變式10-3】如圖,已知平面上有不共線的三點A,B,C.用直尺和圓規(guī)作圖:(1)作線段AC,射線BC;(2)在射線BC上作出一點P,使得BC=BP?AC.(不寫作法,保留作圖痕跡).【考點題型十一】多邊形對角線條數(shù)【典例11】從多邊形的一個頂點出發(fā)可以引出6條對角線,這個多邊形的邊數(shù)為()A.8 B.9 C.10 D.11【變式11-1】一個八邊形至少可以分割成三角形的個數(shù)為(
)A.8 B.5 C.6 D.7【變式11-2】若一個多邊形從某
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合伙合同糾紛審理思路
- 2025年山南貨運資格證考題
- 2025年南通a2貨運資格證考試題
- 2025年西寧年貨運從業(yè)資格證
- 2025年長春貨運資格證模擬考試題庫下載
- 《蜱螨及蜱螨病》課件
- 房地產(chǎn)銷售班組實名管理
- 石材助理勞動合同范例
- 招標投標流程優(yōu)化保證
- 大型游樂場預應力施工合同
- 《網(wǎng)絡傳播概論》考試復習題庫(附答案)
- 熱力環(huán)流(公開課)課件
- 高壓電氣設備的工頻耐壓試驗電壓重點標準
- 蘇教版小學四年級上冊數(shù)學期末知識點綜合復習假期練習題單
- 外墻維修施工合同-標準
- 《國家憲法日》班會教學課件
- TOC-DBR培訓課程完整版ppt課件
- 承插型盤扣式盤扣高支模施工方案(專家論證通過)
- 機械設計課程設計---榫槽成形半自動切削機
- 自動化立體庫貨架驗收報告
- 數(shù)學模型實驗報告5
評論
0/150
提交評論