上海興偉學(xué)院《設(shè)計(jì)表現(xiàn)(1)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
上海興偉學(xué)院《設(shè)計(jì)表現(xiàn)(1)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
上海興偉學(xué)院《設(shè)計(jì)表現(xiàn)(1)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
上海興偉學(xué)院《設(shè)計(jì)表現(xiàn)(1)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
上海興偉學(xué)院《設(shè)計(jì)表現(xiàn)(1)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)上海興偉學(xué)院

《設(shè)計(jì)表現(xiàn)(1)》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺(jué)的文本檢測(cè)和識(shí)別任務(wù)中,假設(shè)要從一張圖片中提取并識(shí)別其中的文字信息。以下關(guān)于文本檢測(cè)和識(shí)別的描述,哪一項(xiàng)是不正確的?()A.可以先通過(guò)文本檢測(cè)算法定位圖片中的文本區(qū)域,然后進(jìn)行識(shí)別B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在文本識(shí)別中表現(xiàn)出色,能夠準(zhǔn)確識(shí)別各種字體和風(fēng)格的文字C.文本檢測(cè)和識(shí)別對(duì)于彎曲、傾斜和模糊的文字能夠輕松應(yīng)對(duì),沒(méi)有任何困難D.可以結(jié)合光學(xué)字符識(shí)別(OCR)技術(shù),將圖片中的文字轉(zhuǎn)換為可編輯的文本2、在計(jì)算機(jī)視覺(jué)的應(yīng)用于工業(yè)檢測(cè)中,需要檢測(cè)產(chǎn)品表面的缺陷和瑕疵。假設(shè)我們要檢測(cè)手機(jī)屏幕上的劃痕和亮點(diǎn),以下哪種方法能夠?qū)崿F(xiàn)快速、準(zhǔn)確的缺陷檢測(cè),并且適應(yīng)不同的產(chǎn)品批次和生產(chǎn)環(huán)境?()A.基于機(jī)器視覺(jué)的傳統(tǒng)檢測(cè)方法,結(jié)合閾值和形態(tài)學(xué)操作B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,針對(duì)缺陷進(jìn)行訓(xùn)練C.基于紋理分析和模式識(shí)別的方法D.基于光學(xué)原理和物理模型的檢測(cè)方法3、在計(jì)算機(jī)視覺(jué)的圖像分類任務(wù)中,假設(shè)要處理類別不均衡的數(shù)據(jù)集,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下關(guān)于處理類別不均衡的方法描述,正確的是:()A.直接使用傳統(tǒng)的分類算法,類別不均衡不會(huì)對(duì)結(jié)果產(chǎn)生明顯影響B(tài).過(guò)采樣少數(shù)類別的樣本可以增加其數(shù)量,但可能導(dǎo)致過(guò)擬合C.欠采樣多數(shù)類別的樣本能夠平衡數(shù)據(jù)集,但會(huì)丟失部分有用信息D.類別不均衡問(wèn)題無(wú)法通過(guò)數(shù)據(jù)處理方法解決,只能通過(guò)改進(jìn)分類算法來(lái)應(yīng)對(duì)4、在計(jì)算機(jī)視覺(jué)的姿態(tài)估計(jì)任務(wù)中,需要確定物體在三維空間中的方向和位置。假設(shè)要估計(jì)一個(gè)機(jī)器人手臂的姿態(tài),以實(shí)現(xiàn)精確的控制和操作。以下哪種姿態(tài)估計(jì)方法在處理這種機(jī)械結(jié)構(gòu)時(shí)準(zhǔn)確性更高?()A.基于模型的姿態(tài)估計(jì)B.基于深度學(xué)習(xí)的姿態(tài)估計(jì)C.基于視覺(jué)慣性里程計(jì)的姿態(tài)估計(jì)D.基于幾何約束的姿態(tài)估計(jì)5、在計(jì)算機(jī)視覺(jué)的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對(duì)于準(zhǔn)確理解場(chǎng)景是至關(guān)重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機(jī)選擇圖像中的部分區(qū)域進(jìn)行分析6、在圖像配準(zhǔn)任務(wù)中,需要將不同時(shí)間、不同視角或不同傳感器獲取的圖像進(jìn)行對(duì)齊。假設(shè)我們要將一張衛(wèi)星圖像與一張航拍圖像進(jìn)行配準(zhǔn),以下哪個(gè)因素對(duì)于配準(zhǔn)的準(zhǔn)確性影響最大?()A.圖像的分辨率差異B.圖像的旋轉(zhuǎn)和平移C.圖像的光照條件D.圖像中的噪聲7、計(jì)算機(jī)視覺(jué)在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中的應(yīng)用可以提供更沉浸式的體驗(yàn)。假設(shè)要在VR環(huán)境中實(shí)時(shí)跟蹤用戶的頭部運(yùn)動(dòng)并相應(yīng)地更新場(chǎng)景,以下關(guān)于VR/AR計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.簡(jiǎn)單的基于傳感器的跟蹤方法能夠滿足VR中高精度的頭部運(yùn)動(dòng)跟蹤需求B.計(jì)算機(jī)視覺(jué)在VR/AR中的應(yīng)用主要關(guān)注圖像生成,而不是跟蹤和定位C.結(jié)合視覺(jué)特征提取和深度學(xué)習(xí)的頭部運(yùn)動(dòng)跟蹤算法可以實(shí)現(xiàn)低延遲和高精度的跟蹤D.VR/AR環(huán)境中的光照條件和物體遮擋對(duì)計(jì)算機(jī)視覺(jué)算法的性能沒(méi)有影響8、計(jì)算機(jī)視覺(jué)在醫(yī)學(xué)圖像分析中有著重要作用。假設(shè)要通過(guò)眼底圖像檢測(cè)糖尿病性視網(wǎng)膜病變,以下關(guān)于模型訓(xùn)練中數(shù)據(jù)標(biāo)注的難度,哪一項(xiàng)是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標(biāo)注B.眼底圖像的質(zhì)量參差不齊,影響標(biāo)注準(zhǔn)確性C.標(biāo)注人員的醫(yī)學(xué)知識(shí)不足,導(dǎo)致標(biāo)注錯(cuò)誤D.數(shù)據(jù)量過(guò)大,標(biāo)注工作耗時(shí)費(fèi)力9、視頻分析是計(jì)算機(jī)視覺(jué)的一個(gè)重要領(lǐng)域。假設(shè)要對(duì)一段監(jiān)控視頻中的行為進(jìn)行分析和理解,以下關(guān)于視頻分析方法的描述,正確的是:()A.直接將視頻中的每一幀圖像作為獨(dú)立的圖像進(jìn)行處理,就能準(zhǔn)確分析視頻中的行為B.考慮視頻的時(shí)序信息和幀間的相關(guān)性對(duì)于理解復(fù)雜的行為非常重要C.視頻分析只適用于簡(jiǎn)單的動(dòng)作識(shí)別,對(duì)于復(fù)雜的多人物交互行為無(wú)法處理D.視頻的分辨率和幀率對(duì)視頻分析的結(jié)果沒(méi)有影響10、在計(jì)算機(jī)視覺(jué)的立體視覺(jué)任務(wù)中,通過(guò)兩個(gè)或多個(gè)相機(jī)獲取的圖像來(lái)計(jì)算深度信息。以下哪種立體匹配算法在精度和效率方面可能表現(xiàn)較好?()A.基于區(qū)域的匹配算法B.基于特征的匹配算法C.基于深度學(xué)習(xí)的匹配算法D.以上都是11、在計(jì)算機(jī)視覺(jué)的人臉識(shí)別任務(wù)中,假設(shè)要實(shí)現(xiàn)一個(gè)能夠在不同光照和表情下準(zhǔn)確識(shí)別的系統(tǒng)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最重要的?()A.對(duì)人臉圖像進(jìn)行歸一化處理,統(tǒng)一大小和亮度B.對(duì)圖像進(jìn)行銳化處理,增強(qiáng)面部特征C.給圖像添加藝術(shù)效果,提高美觀度D.隨機(jī)裁剪圖像,增加數(shù)據(jù)多樣性12、圖像分割是將圖像分成不同的區(qū)域,每個(gè)區(qū)域具有相似的特征。假設(shè)要對(duì)醫(yī)學(xué)圖像進(jìn)行器官分割,以下關(guān)于圖像分割方法的描述,哪一項(xiàng)是不正確的?()A.基于閾值的分割方法簡(jiǎn)單直接,但對(duì)于復(fù)雜圖像效果往往不佳B.基于邊緣檢測(cè)的分割方法通過(guò)尋找圖像中的邊緣來(lái)劃分區(qū)域,但容易受到噪聲影響C.基于深度學(xué)習(xí)的語(yǔ)義分割方法能夠?qū)崿F(xiàn)像素級(jí)別的分類,效果較好,但計(jì)算量較大D.圖像分割只適用于灰度圖像,對(duì)于彩色圖像無(wú)法進(jìn)行有效的分割13、計(jì)算機(jī)視覺(jué)在自動(dòng)駕駛領(lǐng)域有著至關(guān)重要的應(yīng)用。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,需要識(shí)別各種交通標(biāo)志和障礙物。以下關(guān)于自動(dòng)駕駛中計(jì)算機(jī)視覺(jué)任務(wù)的描述,正確的是:()A.只需對(duì)前方物體進(jìn)行簡(jiǎn)單的圖像分類,就能實(shí)現(xiàn)安全的自動(dòng)駕駛B.準(zhǔn)確的目標(biāo)檢測(cè)和語(yǔ)義分割對(duì)于理解復(fù)雜的道路場(chǎng)景至關(guān)重要C.計(jì)算機(jī)視覺(jué)在自動(dòng)駕駛中作用不大,主要依靠其他傳感器如雷達(dá)D.對(duì)于交通標(biāo)志的識(shí)別,顏色信息比形狀和圖案信息更重要14、物體檢測(cè)是計(jì)算機(jī)視覺(jué)中的一項(xiàng)關(guān)鍵任務(wù)。假設(shè)一個(gè)智能監(jiān)控系統(tǒng)需要檢測(cè)場(chǎng)景中的特定物體,如背包、自行車等。以下關(guān)于物體檢測(cè)算法的描述,哪一項(xiàng)是不正確的?()A.基于深度學(xué)習(xí)的物體檢測(cè)算法能夠同時(shí)檢測(cè)多個(gè)物體,并給出它們的位置和類別B.可以通過(guò)滑動(dòng)窗口的方法在圖像中搜索可能的物體區(qū)域,然后進(jìn)行分類判斷C.物體檢測(cè)算法需要對(duì)大量的標(biāo)注圖像進(jìn)行訓(xùn)練,以學(xué)習(xí)不同物體的特征D.無(wú)論物體的大小、形狀和顏色如何變化,物體檢測(cè)算法都能準(zhǔn)確檢測(cè)到15、計(jì)算機(jī)視覺(jué)中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定的目標(biāo)。以下關(guān)于目標(biāo)跟蹤的敘述,不正確的是()A.目標(biāo)跟蹤可以基于特征匹配、濾波算法或深度學(xué)習(xí)方法來(lái)實(shí)現(xiàn)B.目標(biāo)的外觀變化、遮擋和背景干擾等因素會(huì)給目標(biāo)跟蹤帶來(lái)挑戰(zhàn)C.目標(biāo)跟蹤在智能監(jiān)控、人機(jī)交互和自動(dòng)駕駛等領(lǐng)域有著廣泛的應(yīng)用D.目標(biāo)跟蹤算法能夠在任何情況下都準(zhǔn)確地跟蹤目標(biāo),不受復(fù)雜環(huán)境的影響16、計(jì)算機(jī)視覺(jué)在安防監(jiān)控領(lǐng)域有重要應(yīng)用。假設(shè)要通過(guò)攝像頭監(jiān)控一個(gè)公共場(chǎng)所,以下關(guān)于計(jì)算機(jī)視覺(jué)在安防監(jiān)控中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以實(shí)時(shí)檢測(cè)異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進(jìn)行身份識(shí)別和認(rèn)證C.計(jì)算機(jī)視覺(jué)系統(tǒng)可以獨(dú)立完成所有的安防監(jiān)控任務(wù),不需要人工干預(yù)D.與其他安防設(shè)備和系統(tǒng)集成,提高整體的安全性和防范能力17、計(jì)算機(jī)視覺(jué)在文物保護(hù)和修復(fù)中的應(yīng)用逐漸增多。假設(shè)要對(duì)一幅古老的繪畫進(jìn)行數(shù)字化修復(fù)和增強(qiáng),以下關(guān)于顏色恢復(fù)的挑戰(zhàn),哪一項(xiàng)是最為顯著的?()A.由于年代久遠(yuǎn),原畫作的顏色信息缺失嚴(yán)重B.不同區(qū)域的顏色褪色程度不一致,難以統(tǒng)一恢復(fù)C.缺乏對(duì)原畫作創(chuàng)作時(shí)所用顏料的了解,難以準(zhǔn)確還原顏色D.修復(fù)過(guò)程中可能引入新的顏色偏差,影響修復(fù)效果18、計(jì)算機(jī)視覺(jué)中的人臉識(shí)別技術(shù)應(yīng)用廣泛。假設(shè)要在一個(gè)門禁系統(tǒng)中實(shí)現(xiàn)準(zhǔn)確的人臉識(shí)別,以下關(guān)于人臉識(shí)別方法的描述,正確的是:()A.基于幾何特征的人臉識(shí)別方法對(duì)姿態(tài)和光照變化具有很強(qiáng)的魯棒性B.基于模板匹配的方法能夠處理大規(guī)模的人臉數(shù)據(jù)庫(kù),并且識(shí)別速度快C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在人臉識(shí)別中能夠?qū)W習(xí)到更具判別性的特征,但容易受到數(shù)據(jù)偏差的影響D.人臉識(shí)別系統(tǒng)一旦訓(xùn)練完成,就不需要更新和優(yōu)化,能夠一直保持高準(zhǔn)確率19、在計(jì)算機(jī)視覺(jué)的目標(biāo)跟蹤任務(wù)中,需要持續(xù)跟蹤一個(gè)或多個(gè)運(yùn)動(dòng)目標(biāo)。假設(shè)要跟蹤一個(gè)在操場(chǎng)上跑步的人。以下關(guān)于目標(biāo)跟蹤算法的描述,哪一項(xiàng)是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標(biāo)的相似特征來(lái)實(shí)現(xiàn)跟蹤B.深度學(xué)習(xí)中的相關(guān)濾波算法能夠快速準(zhǔn)確地跟蹤目標(biāo),適應(yīng)目標(biāo)的外觀變化C.目標(biāo)跟蹤算法能夠在目標(biāo)被遮擋或短暫消失后,仍然準(zhǔn)確地恢復(fù)跟蹤D.無(wú)論目標(biāo)的運(yùn)動(dòng)速度和軌跡如何復(fù)雜,目標(biāo)跟蹤算法都能完美地跟蹤20、在計(jì)算機(jī)視覺(jué)中,圖像超分辨率重建是提高圖像分辨率和質(zhì)量的技術(shù)。以下關(guān)于圖像超分辨率重建的敘述,不正確的是()A.圖像超分辨率重建可以通過(guò)插值、基于模型的方法或深度學(xué)習(xí)方法來(lái)實(shí)現(xiàn)B.深度學(xué)習(xí)方法在圖像超分辨率重建中能夠生成更清晰、逼真的細(xì)節(jié)C.圖像超分辨率重建在醫(yī)學(xué)圖像、衛(wèi)星圖像和監(jiān)控圖像等領(lǐng)域有重要的應(yīng)用D.圖像超分辨率重建可以無(wú)限制地提高圖像的分辨率,不受原始圖像信息的限制21、在計(jì)算機(jī)視覺(jué)的動(dòng)作識(shí)別任務(wù)中,識(shí)別視頻中的人物動(dòng)作。假設(shè)要識(shí)別一段舞蹈視頻中的動(dòng)作,以下關(guān)于動(dòng)作識(shí)別方法的描述,哪一項(xiàng)是不正確的?()A.可以提取視頻中的時(shí)空特征,如光流和運(yùn)動(dòng)軌跡,來(lái)描述動(dòng)作B.基于深度學(xué)習(xí)的方法,如3D卷積神經(jīng)網(wǎng)絡(luò),能夠直接處理視頻數(shù)據(jù),進(jìn)行動(dòng)作識(shí)別C.動(dòng)作識(shí)別需要考慮動(dòng)作的速度、幅度和節(jié)奏等特征D.動(dòng)作識(shí)別只適用于簡(jiǎn)單的、規(guī)范化的動(dòng)作,對(duì)于復(fù)雜的、個(gè)性化的動(dòng)作無(wú)法準(zhǔn)確識(shí)別22、在計(jì)算機(jī)視覺(jué)的目標(biāo)識(shí)別任務(wù)中,假設(shè)目標(biāo)物體被部分遮擋,以下哪種模型架構(gòu)可能更有助于恢復(fù)被遮擋部分的信息?()A.多層感知機(jī)(MLP)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)D.注意力機(jī)制(AttentionMechanism)23、在一個(gè)基于計(jì)算機(jī)視覺(jué)的智能零售系統(tǒng)中,需要對(duì)顧客的購(gòu)物行為進(jìn)行分析,如拿起商品、放回商品等動(dòng)作的識(shí)別。以下哪種技術(shù)在動(dòng)作識(shí)別方面可能發(fā)揮重要作用?()A.光流分析B.目標(biāo)跟蹤C(jī).動(dòng)作捕捉D.以上都是24、在計(jì)算機(jī)視覺(jué)的視覺(jué)跟蹤與定位任務(wù)中,實(shí)時(shí)跟蹤物體并確定其在空間中的位置。假設(shè)要在一個(gè)室內(nèi)環(huán)境中跟蹤一個(gè)移動(dòng)的機(jī)器人并確定其位置,以下關(guān)于視覺(jué)跟蹤與定位方法的描述,正確的是:()A.基于標(biāo)志物的跟蹤與定位方法在標(biāo)志物被遮擋時(shí)仍能準(zhǔn)確工作B.視覺(jué)里程計(jì)方法能夠獨(dú)立實(shí)現(xiàn)高精度的長(zhǎng)期跟蹤與定位C.同時(shí)使用多個(gè)相機(jī)進(jìn)行觀測(cè)不能提高跟蹤與定位的性能D.環(huán)境的光照變化和動(dòng)態(tài)障礙物對(duì)視覺(jué)跟蹤與定位的結(jié)果影響較小25、在計(jì)算機(jī)視覺(jué)中,圖像分割旨在將圖像劃分為不同的區(qū)域,每個(gè)區(qū)域具有相似的特征。以下關(guān)于圖像分割的敘述,不正確的是()A.圖像分割可以基于像素的顏色、紋理等特征進(jìn)行B.深度學(xué)習(xí)方法在圖像分割中取得了顯著的成果,如全卷積網(wǎng)絡(luò)(FCN)C.圖像分割在醫(yī)學(xué)影像分析、自動(dòng)駕駛場(chǎng)景理解等方面具有重要作用D.圖像分割的結(jié)果總是完美的,能夠準(zhǔn)確地將圖像中的所有物體都分割出來(lái)二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的多視圖幾何原理。2、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在農(nóng)業(yè)中的應(yīng)用。3、(本題5分)解釋計(jì)算機(jī)視覺(jué)在退役軍人服務(wù)中的作用。4、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在智能穿戴設(shè)備中的應(yīng)用。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某科技產(chǎn)品發(fā)布會(huì)的邀請(qǐng)函設(shè)計(jì)獨(dú)具匠心。請(qǐng)研究邀請(qǐng)函在材質(zhì)選擇、造型設(shè)計(jì)、活動(dòng)信息傳達(dá)上的創(chuàng)意,以及如何激發(fā)受邀者的興趣。2、(本題5分)研究某電子產(chǎn)品的界面設(shè)計(jì),從用戶體驗(yàn)、色彩搭配和交互設(shè)計(jì)等方面,分析其如何提高產(chǎn)品的易用性和用戶滿意度。3、(本題5分)分析某辦公用品品牌的產(chǎn)品目錄設(shè)計(jì),觀察其如何通過(guò)簡(jiǎn)潔明了的排版和準(zhǔn)確的產(chǎn)品描述,滿足企

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論