版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
北京市中國人民人大附屬中學(xué)2025屆高三第二次診斷性檢測數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若,則雙曲線的離心率為()A. B. C.4 D.22.函數(shù)的圖象大致為()A. B.C. D.3.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或84.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標(biāo)原點),則雙曲線的離心率為()A. B. C. D.5.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設(shè),則的取值范圍是()A. B. C. D.6.復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是A.1+i B.1?i C.?1+i D.?1?i7.已知為定義在上的奇函數(shù),若當(dāng)時,(為實數(shù)),則關(guān)于的不等式的解集是()A. B. C. D.8.已知集合,,則()A. B. C. D.9.“角谷猜想”的內(nèi)容是:對于任意一個大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.910.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應(yīng)填寫()A. B. C. D.11.已知函數(shù)的圖象如圖所示,則下列說法錯誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是12.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形二、填空題:本題共4小題,每小題5分,共20分。13.若變量x,y滿足:,且滿足,則參數(shù)t的取值范圍為_______.14.已知拋物線的焦點為,過點且斜率為1的直線與拋物線交于點,以線段為直徑的圓上存在點,使得以為直徑的圓過點,則實數(shù)的取值范圍為________.15.如圖,已知圓內(nèi)接四邊形ABCD,其中,,,,則__________.16.邊長為2的正方形經(jīng)裁剪后留下如圖所示的實線圍成的部分,將所留部分折成一個正四棱錐.當(dāng)該棱錐的體積取得最大值時,其底面棱長為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點為,過點且斜率為的直線與橢圓交于兩點,線段的中點為為坐標(biāo)原點.(1)證明:點在軸的右側(cè);(2)設(shè)線段的垂直平分線與軸、軸分別相交于點.若與的面積相等,求直線的斜率18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若恒成立,求實數(shù)的取值范圍.19.(12分)在平面直角坐標(biāo)系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點.圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當(dāng)線段AB的長度最小時,求s的值.20.(12分)選修4-5:不等式選講設(shè)函數(shù)f(x)=|x-a|,a<0.(1)證明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求21.(12分)已知曲線C的極坐標(biāo)方程是.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)m值.(2)設(shè)為曲線上任意一點,求的取值范圍.22.(10分)在中,內(nèi)角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計算,離心率的求法,屬于基礎(chǔ)題和易錯題.2、A【解析】
用偶函數(shù)的圖象關(guān)于軸對稱排除,用排除,用排除.故只能選.【詳解】因為,所以函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據(jù)函數(shù)的性質(zhì),辨析函數(shù)的圖像,排除法,屬于中檔題.3、B【解析】
根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對稱性問題,屬基礎(chǔ)題4、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).5、C【解析】
以為坐標(biāo)原點,以分別為x軸,y軸建立直角坐標(biāo)系,利用向量的坐標(biāo)運算計算即可解決.【詳解】以為坐標(biāo)原點建立如圖所示的直角坐標(biāo)系,不妨設(shè)正方形的邊長為1,則,,設(shè),則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標(biāo)運算求變量的取值范圍,考查學(xué)生的基本計算能力,本題的關(guān)鍵是建立適當(dāng)?shù)闹苯亲鴺?biāo)系,是一道基礎(chǔ)題.6、B【解析】分析:化簡已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復(fù)數(shù)為1﹣i.故選B.點睛:本題考查復(fù)數(shù)的代數(shù)形式的運算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.7、A【解析】
先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當(dāng)時,.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數(shù)的性質(zhì)應(yīng)用,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運算的核心素養(yǎng).8、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學(xué)生的基本運算能力,是一道容易題.9、B【解析】
模擬程序運行,觀察變量值可得結(jié)論.【詳解】循環(huán)前,循環(huán)時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時可模擬程序運行,觀察變量值,從而得出結(jié)論.10、B【解析】
模擬程序框圖運行分析即得解.【詳解】;;.所以①處應(yīng)填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學(xué)生對這些知識的理解掌握水平.11、B【解析】
根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對稱性逐項判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時,函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時,函數(shù)在上單調(diào)遞增,故B錯誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.12、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質(zhì)及推論.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)變量x,y滿足:,畫出可行域,由,解得直線過定點,直線繞定點旋轉(zhuǎn)與可行域有交點即可,再結(jié)合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點,由,解得,由,解得,要使,則與可行域有交點,當(dāng)時,滿足條件,當(dāng)時,直線得斜率應(yīng)該不小于AC,而不大于AB,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:【點睛】本題主要考查線性規(guī)劃的應(yīng)用,還考查了轉(zhuǎn)化運算求解的能力,屬于中檔題.14、【解析】
由題意求出以線段AB為直徑的圓E的方程,且點D恒在圓E外,即圓E上存在點,使得,則當(dāng)與圓E相切時,此時,由此列出不等式,即可求解?!驹斀狻坑深}意可得,直線的方程為,聯(lián)立方程組,可得,設(shè),則,,設(shè),則,,又,所以圓是以為圓心,4為半徑的圓,所以點恒在圓外.圓上存在點,使得以為直徑的圓過點,即圓上存在點,使得,設(shè)過點的兩直線分別切圓于點,要滿足題意,則,所以,整理得,解得,故實數(shù)的取值范圍為【點睛】本題主要考查了直線與拋物線位置關(guān)系的應(yīng)用,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中準(zhǔn)確求得圓E的方程,把圓上存在點,使得以為直徑的圓過點,轉(zhuǎn)化為圓上存在點,使得是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題。15、【解析】
由題意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【詳解】由圓內(nèi)接四邊形的性質(zhì)可得,.連接BD,在中,有.在中,.所以,則,所以.連接AC,同理可得,所以.所以.故答案為:【點睛】本題考查余弦定理解三角形,同角三角函數(shù)基本關(guān)系,意在考查方程思想,計算能力,屬于中檔題型,本題的關(guān)鍵是熟悉圓內(nèi)接四邊形的性質(zhì),對角互補.16、【解析】
根據(jù)題意,建立棱錐體積的函數(shù),利用導(dǎo)數(shù)求函數(shù)的最大值即可.【詳解】設(shè)底面邊長為,則斜高為,即此四棱錐的高為,所以此四棱錐體積為,令,令,易知函數(shù)在時取得最大值.故此時底面棱長.故答案為:.【點睛】本題考查棱錐體積的求解,涉及利用導(dǎo)數(shù)研究體積最大值的問題,屬綜合中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)設(shè)出直線的方程,與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求出點的橫坐標(biāo)即可證出;(2)根據(jù)線段的垂直平分線求出點的坐標(biāo),即可求出的面積,再表示出的面積,由與的面積相等列式,即可解出直線的斜率.【詳解】(1)由題意,得,直線()設(shè),,聯(lián)立消去,得,顯然,,則點的橫坐標(biāo),因為,所以點在軸的右側(cè).(2)由(1)得點的縱坐標(biāo).即.所以線段的垂直平分線方程為:.令,得;令,得.所以的面積,的面積.因為與的面積相等,所以,解得.所以當(dāng)與的面積相等時,直線的斜率.【點睛】本題主要考查直線與橢圓的位置關(guān)系的應(yīng)用、根與系數(shù)的關(guān)系應(yīng)用,以及三角形的面積的計算,意在考查學(xué)生的數(shù)學(xué)運算能力,屬于中檔題.18、(1)當(dāng)時,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;(2).【解析】
(1)對a分三種情況討論求出函數(shù)的單調(diào)性;(2)對a分三種情況,先求出每一種情況下函數(shù)f(x)的最小值,再解不等式得解.【詳解】(1),當(dāng)時,,在上單調(diào)遞增;當(dāng)時,,,,,∴在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,,,,,∴在上單調(diào)遞減,在上單調(diào)遞增.綜上:當(dāng)時,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知:當(dāng)時,,∴成立.當(dāng)時,,,∴.當(dāng)時,,,∴,即.綜上.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.19、(1),(2).【解析】
根據(jù)題意設(shè),可得PF的方程,根據(jù)距離即可求出;點Q處的切線的斜率存在,由對稱性不妨設(shè),根據(jù)導(dǎo)數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值.【詳解】因為拋物線C的方程為,所以F的坐標(biāo)為,設(shè),因為圓M與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點,則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設(shè),,,由知,點Q處的切線的斜率存在,由對稱性不妨設(shè),由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時,取得極小值也是最小值,即AB取得最小值此時.【點睛】本題考查了直線和拋物線的位置關(guān)系,以及利用導(dǎo)數(shù)求函數(shù)最值的關(guān)系,考查了運算能力和轉(zhuǎn)化能力,屬于難題.20、(1)見解析.(1)(-1,0).【解析】試題分析:(1)直接計算f(x)+f(-1(1)f(x)+f(2x)=|x-a|+|2x-a|,分區(qū)間討論去絕對值符號分別解不等式即可.試題解析:(1)證明:函數(shù)f(x)=|x﹣a|,a<2,則f(x)+f(﹣)=|x﹣a|+|﹣﹣a|=|x﹣a|+|+a|≥|(x﹣a)+(+a)|=|x+|=|x|+≥1=1.(1)f(x)+f(1x)=|x﹣a|+|1x﹣a|,a<2.當(dāng)x≤a時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)品訂貨合同簡單樣本
- 2025年油煙機安裝與環(huán)保排放監(jiān)測服務(wù)合同3篇
- 養(yǎng)護合同協(xié)議書
- 倉庫租賃合同模板簡單版
- 促銷方案范文合集8篇
- 保潔清潔合同
- 四年級語文教師工作總結(jié)2022年
- 石材采購合同
- 煤化工工藝學(xué)課程設(shè)計
- 農(nóng)家樂租賃合同書模板
- 三星公司供應(yīng)鏈管理流程綜合分析報告
- 初二家長會課件精品
- ()電動力學(xué)期末復(fù)習(xí)
- 湖南省鄉(xiāng)鎮(zhèn)衛(wèi)生院街道社區(qū)衛(wèi)生服務(wù)中心地址醫(yī)療機構(gòu)名單目錄
- 冠心病的中醫(yī)治療
- 福建省三明市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細及行政區(qū)劃代碼
- 2023年度虹口區(qū)第一學(xué)期期末六年級數(shù)學(xué)
- 《智慧農(nóng)業(yè)》的ppt完整版
- 水稻高產(chǎn)高效栽培管理新技術(shù)課件
- 水環(huán)境保護課程設(shè)計報告
- (高清版)建筑裝飾裝修職業(yè)技能標(biāo)準(zhǔn)JGJ_T 315-2016
評論
0/150
提交評論