版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
七年級(jí)數(shù)學(xué)華師版上冊(cè)教案
第1章圭進(jìn)數(shù)學(xué)世界
課題數(shù)學(xué)伴我們成長(zhǎng)人類離不開(kāi)數(shù)學(xué)
【學(xué)習(xí)目標(biāo)】【學(xué)習(xí)重點(diǎn)】
1.讓學(xué)生通過(guò)生活實(shí)例感受數(shù)學(xué)與現(xiàn)讓學(xué)生感受數(shù)學(xué)與現(xiàn)實(shí)世界是密不可
實(shí)世界的密切聯(lián)系、數(shù)學(xué)價(jià)值和應(yīng)用意識(shí);分的.
2.讓學(xué)生通過(guò)對(duì)比初步體驗(yàn)到數(shù)學(xué)是【學(xué)習(xí)難點(diǎn)】
一門充滿著觀.察,實(shí)驗(yàn).歸納,類比和猜測(cè).培養(yǎng)學(xué)生獨(dú)立思考與合作交流的習(xí)慣.
探索過(guò)程的學(xué)科;
3.在學(xué)習(xí)的過(guò)程中赤成獨(dú)立思考與合
作交流的習(xí)慣.
教學(xué)環(huán)節(jié)指導(dǎo)
行為提示:創(chuàng)設(shè)問(wèn)題,情境導(dǎo)入,結(jié)合生活中的實(shí)際例子,充分調(diào)動(dòng)學(xué)生的積極性,激
發(fā)學(xué)生求知欲望.
行為提示:讓學(xué)生閱讀教材,嘗試完成“自學(xué)互研”的所有內(nèi)容,并適時(shí)給學(xué)生提供幫
助,率先做完的小組內(nèi)互查,大部分學(xué)生完成后,進(jìn)行小組交流.
知也銃接:小學(xué)學(xué)過(guò)的數(shù)學(xué)知識(shí):
1.整數(shù)、小數(shù)、分?jǐn)?shù)的四則運(yùn)算;
2.初步認(rèn)識(shí)元角分、年月日、長(zhǎng)度單位、重量單位;
3.了解簡(jiǎn)單的幾何圖形;
4.初步了解統(tǒng)計(jì)、概率的簡(jiǎn)單知識(shí).
5.初步了解方程及其簡(jiǎn)單的解法.
做這一類題的技巧是:
1.從已知中尋找突破口,發(fā)現(xiàn)變化的規(guī)律;
2.一般采用“從一般到特殊”的思維方式;
3.掌握用“加、減、乘、除”的基本形式表達(dá)發(fā)現(xiàn)的規(guī)律.
一、情景導(dǎo)入生成問(wèn)題
在我們的周圍,宇宙之大,粒子之微,火箭之速,化工之巧,生物之謎,日用之繁……,
大千世界,天上人間,無(wú)處不有數(shù)學(xué)的貢獻(xiàn),讓我們一起走進(jìn)數(shù)學(xué)世界,去領(lǐng)略一下數(shù)學(xué)的
風(fēng)采.
二、曲學(xué)互研生成能力
閱讀教材P2,完成下面的內(nèi)容.
從出生到步入七年級(jí),我們都在不斷地學(xué)習(xí)數(shù)學(xué),回憶一下,我們?cè)谛W(xué)階段學(xué)習(xí)的數(shù)
學(xué)知識(shí)主要有哪些?
歸納:(1)數(shù)與式:認(rèn)識(shí)、計(jì)算、方程、解應(yīng)用題:
(2)圖形:圖形的認(rèn)識(shí)、圖形的畫法、圖形的計(jì)算;
(3)統(tǒng)計(jì)知識(shí):條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖及從圖中獲取相應(yīng)的信息.
范例:計(jì)算并觀察下面的幾組算式:
⑴1+3=4=(2F
(2)1+3+5=9=(3F
(3)1+3+5+7=16=(4產(chǎn):
(4)你能舉一個(gè)類似的洌子嗎?
1+3+5+7+9+11+13+15+17+19=100=(10產(chǎn)
(5)一般地:1+3+5+7++(2〃-1)=(〃根
仿例:如圖1,線段A從當(dāng)在線段A4上加上1個(gè)點(diǎn)(該點(diǎn)不與點(diǎn)A、3重合)時(shí),共有3
條線段;當(dāng)在線段A8上加上2個(gè)點(diǎn)(這2個(gè)點(diǎn)不與點(diǎn)A、B重合)時(shí),如圖2,共有6條線段;
當(dāng)在線段A8上加上3個(gè)點(diǎn)(這3個(gè)點(diǎn)不與點(diǎn)A、8重合)時(shí),如圖3,共有10條線段……
A'BA''B
圖1圖2
A'''RA__B
圖3圖4
(1)當(dāng)在線段44上加二5個(gè)點(diǎn)(這5個(gè)點(diǎn)不與點(diǎn)4、8重合)時(shí),如圖4,共有21條線
段;
行為提示:感受數(shù)學(xué)的魅力,人類離不開(kāi)數(shù)學(xué).發(fā)現(xiàn)數(shù)學(xué)的奧秘,是人類智慧的結(jié)晶.
如板鏈接:同一種形狀或不同形狀的地磚,鋪在地面上無(wú)空隙即可稱為密鋪.
學(xué)法指導(dǎo):兩個(gè)不同形狀的地磚的角(或多個(gè)角)鋪成一個(gè)周角.
行為提示:教師結(jié)合各組反饋的疑難問(wèn)題分配任務(wù),各組展示過(guò)程中,教師引導(dǎo)其他組
進(jìn)行補(bǔ)充、糾錯(cuò)、釋疑,然后進(jìn)行總結(jié)評(píng)分.
展示日林:知識(shí)模塊一展示重點(diǎn)在于讓學(xué)生理解數(shù)學(xué)與我們的生活密不可分;
知識(shí)模塊二展示重點(diǎn)在于讓學(xué)生知道我們的生產(chǎn)、芻活、科學(xué)實(shí)驗(yàn)與研究等都離不開(kāi)數(shù)
學(xué).(2)猜測(cè):當(dāng)在線段AB上加上n個(gè)點(diǎn)(這〃個(gè)點(diǎn)不與點(diǎn)A、B重合)時(shí),共有
(〃+1)(〃+2)
,條線段.
2
變例:觀察下面一列數(shù):2,5,10,x,26,37,50,65,…,根據(jù)規(guī)律,其中x所表示
的數(shù)是17.
分析:第二個(gè)數(shù)比第一個(gè)數(shù)大3,第三個(gè)數(shù)比第二個(gè)數(shù)大5,第六個(gè)數(shù)比第五個(gè)數(shù)大11,
由此可知:x比10大7,26比匯大9,所以工必為(10+7)或(26—9).
閱讀教材P2?P4,完成下面的內(nèi)容.
大千世界,無(wú)奇不有!大至宇宙,小至微粒,無(wú)不蘊(yùn)涵著豐富的數(shù)學(xué)奧秘!如蜜螭營(yíng)造
的蜂房,公園中用不同形狀的圖形鋪設(shè)的絢麗多彩的地面……,數(shù)學(xué)奇妙吧?下面就讓我們
一起研究一些數(shù)學(xué)問(wèn)題吧!
范例:哪些形狀的磚可以密鋪地面?
下圖分別是用同樣大小的正方形和正六邊形的地磚鋪成的,它們可以鋪成平整、無(wú)空隙
的地面.
那么除了這兩種形狀的地磚外,還有哪些形狀的地磚能夠像上圖那樣鋪滿地面呢?
解:三角形、長(zhǎng)方形、平行四邊形、菱形等.
仿例:用同一種形狀的地磚密鋪地面,下列形狀的地磚不能采用的是(C)
A.正三角形B.正方形C.正五邊形D.正六邊形
變例:用兩種不同形狀的地磚密鋪地面,這樣的兩種地磚的形狀可以是正三角形和正六
邊形(任舉一例).
三.交流費(fèi)示生成新知
袤康預(yù)屐
1.各小組共同探討“自學(xué)互研”部分,將疑難問(wèn)題板演到黑板上,小組間就上述疑難問(wèn)
題相互釋疑;
2.組長(zhǎng)帶領(lǐng)組員參照展示方案,分配好展示任務(wù),同時(shí)進(jìn)行組內(nèi)小展示,將形成的展示
方案在黑板上進(jìn)行展示.
底不娓升
知識(shí)模塊一數(shù)學(xué)伴我們成長(zhǎng)
知識(shí)模塊二人類離不開(kāi)數(shù)學(xué)
四、檢測(cè)反債達(dá)成目掘
見(jiàn)學(xué)生用書(shū).
五、課后反思查漏補(bǔ)缺
I收獲:
2存在困惑
課題人人都能學(xué)會(huì)數(shù)學(xué)
【學(xué)習(xí)目標(biāo)】【學(xué)習(xí)重點(diǎn)】
1.讓學(xué)生體會(huì)數(shù)學(xué)與我們的生活密切讓學(xué)生感受數(shù)學(xué)伴隨著我們的成長(zhǎng),我
相關(guān);們的成表離不開(kāi)數(shù)學(xué).
2.讓學(xué)生從現(xiàn)實(shí)生活中抽象出點(diǎn)、線、【學(xué)習(xí)難點(diǎn)】
面、體等圖形,培養(yǎng)學(xué)生的觀察能力、分析讓學(xué)生樹(shù)立學(xué)習(xí)數(shù)學(xué)的信心.
能力,感受學(xué)習(xí)數(shù)學(xué)的樂(lè)趣;
3.在學(xué)習(xí)的過(guò)程中養(yǎng)成獨(dú)立思考與合
作交流的習(xí)慣.
教學(xué)環(huán)節(jié)指導(dǎo)
行為提示:創(chuàng)設(shè)問(wèn)題,情境導(dǎo)入,結(jié)合生活中的實(shí)際例子,充分調(diào)動(dòng)學(xué)生的積極性,激
發(fā)學(xué)生求知欲望.
行為提示:讓學(xué)生閱讀教材,嘗試完成“自學(xué)互研”的所有內(nèi)容,并適時(shí)給學(xué)生提供幫
助,率先做完的小組內(nèi)互查,大部分學(xué)生完成后,進(jìn)行個(gè)組交流.
知在鏈接:
1.數(shù)與式:認(rèn)識(shí)、計(jì)算、解方程、解應(yīng)用題;
2.圖形:圖形的認(rèn)識(shí)、圖形的畫法、圖形的有關(guān)計(jì)算.
一、情景尋入生成問(wèn)題
1.數(shù)學(xué)并不神秘、,不是只有天才才能學(xué)好數(shù)學(xué),只要通過(guò)努力,人人都能學(xué)會(huì)數(shù)學(xué).學(xué)
好數(shù)學(xué),要對(duì)數(shù)學(xué)有興趣,要有刻苦鉆研的精神,善于發(fā)現(xiàn)和提出問(wèn)題,善于獨(dú)立思考.
2.思考并解決下列問(wèn)題:
(1)某地出租車收費(fèi)標(biāo)準(zhǔn)為:起步價(jià)5元,3km后每千米1.2元,某人乘坐出租車5km,
應(yīng)付款7.4元.
(2)如圖,陰影部分的面積相等的是(D)
①②③④
A.①與④B.①與③
C.②與③D.①與②、③
二、自學(xué)互研生成能力
閱讀教材P5?P7,完成下面的內(nèi)容.
1.點(diǎn)動(dòng)成一線一,線動(dòng)成一面一,面動(dòng)成一位;面與面相交得到線與線相交
得到一點(diǎn)一.
2.三棱柱有6個(gè)頂點(diǎn),9條三,5個(gè)面,它的側(cè)面的形狀都是*2^,
它的底面是一兩個(gè)形狀相同的三角形
3.如圖,是6級(jí)臺(tái)階側(cè)面的示意圖,如果要在臺(tái)階上鋪地毯,那么至少要買適合臺(tái)階寬
度的地毯多少m?
分析:要在臺(tái)階上鋪地毯,實(shí)際上并不需要測(cè)出每一級(jí)臺(tái)階的長(zhǎng)度,可以把圖想象為由
一根繩子圍成的圖形,將它拉成為一個(gè)長(zhǎng)和寬分別為3.1m和2m的長(zhǎng)方形,所以臺(tái)階的總長(zhǎng)
就是:3.l+2=5.1(m).
解:3.1+2=5.1(m).
???至少要買適合臺(tái)階寬度的地毯5.1m.
歸納:(1)發(fā)展進(jìn)一步獲得的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能;
(2)體會(huì)數(shù)學(xué)知識(shí)間的聯(lián)系,培養(yǎng)邏輯思維方式;
(3)感受數(shù)學(xué)的價(jià)值,養(yǎng)成獨(dú)立思考的學(xué)習(xí)習(xí)慣.
做這一類題.的技巧是:
1.從已知中尋找突破口,發(fā)現(xiàn)變化的規(guī)律;
2.一般采用“從一般到特殊”的思維方式;
3.掌握用“加、減、乘、除”的基本形式表達(dá)發(fā)現(xiàn)的規(guī)律.
學(xué)法指導(dǎo):解決尋找規(guī)律問(wèn)題的方法是:觀察第2個(gè)數(shù)(或圖形)與前一個(gè)數(shù)(或圖形)有什
么聯(lián)系、變化,類推下一個(gè),由一般到特殊.
?手法指導(dǎo):這些橘子的個(gè)數(shù)一定是3的倍數(shù).
行為提示:教師結(jié)合各組反饋的疑難問(wèn)題分配任務(wù),各組展示過(guò)程中,教師引導(dǎo)其他組
進(jìn)行補(bǔ)充、糾錯(cuò)、釋疑,然后進(jìn)行總結(jié)評(píng)分.
展示日林:知識(shí)模塊展示重點(diǎn)在于通過(guò)解決數(shù)學(xué)問(wèn)題,讓學(xué)生知道數(shù)學(xué)并不是那么難,
只有通過(guò)自身的努力才能學(xué)好數(shù)學(xué).
范例:如圖,將一張正方形紙片剪成四個(gè)小正方形,得到4個(gè)小正方形,稱為第一次操
作;然后,將其中的一個(gè)正方形再剪成4個(gè)小正方形,共得到7個(gè)小正方形,稱為第二次操
作;再將其中的一個(gè)正方形剪成4個(gè)小正方形,共得到10個(gè)小正方形,稱為第三次操作:……
根據(jù)以上操作,若要得到2017個(gè)小正方形,則需要操作的次數(shù)是
分析:本題是規(guī)律類型的數(shù)學(xué)題,通過(guò)觀察,我們?nèi)菀装l(fā)現(xiàn),當(dāng)操作第〃(〃為正整數(shù))次
時(shí),共得到(3〃+1)個(gè)小正方形,從而我們可以列一個(gè)關(guān)于〃(以〃為未知數(shù))的方程,解出〃
的值即可.
解:設(shè)操作〃次可以得到2017個(gè)小正方形,根據(jù)題意得:
3〃+1=2017,
解得:/2=672.
答:需要操作的次數(shù)是672.
仿例:根據(jù)前面幾個(gè)數(shù)的規(guī)律填空:
(1)5,8,13,21,34,55:
J23513
(2)展y彳+百,—'
分析:(1)規(guī)律:第1個(gè)數(shù)加上第2個(gè)數(shù)得到第3個(gè)數(shù),第2個(gè)數(shù)加上第3個(gè)數(shù)得到第4
個(gè)數(shù),第3個(gè)數(shù)加上第4個(gè)數(shù)得到第5個(gè)數(shù),第4個(gè)數(shù)加上第5個(gè)數(shù)得到第6個(gè)數(shù)…;
(2)規(guī)律:前一個(gè)分?jǐn)?shù)的分母是下一個(gè)分?jǐn)?shù)的分子,前一個(gè)數(shù)的分子與分母的和是后一個(gè)
分?jǐn)?shù)的分母.
變例:在學(xué)校體育課上,老師準(zhǔn)備了一些橘子給同學(xué)們,小明非常勤快,幫老師數(shù)橘子,
他7個(gè)7個(gè)地?cái)?shù),還余4個(gè),5個(gè)5個(gè)地?cái)?shù),還余3個(gè),3個(gè)3個(gè)地?cái)?shù),正好數(shù)完,則老師至
少為同學(xué)們準(zhǔn)備了_1^_個(gè)橘子.
三、交流展示生成所知
次傀顏展
I.各小組共同探討“自學(xué)互研”部分,將疑難問(wèn)題板演到黑板上,小組間就上述疑難問(wèn)
題相互釋疑:
2.組長(zhǎng)帶領(lǐng)組員參照展示方案,分配好展示任務(wù),同時(shí)進(jìn)行組內(nèi)小展示,將形成的展示
方案在黑板上進(jìn)行展示.
屐市提升
知識(shí)模塊人人都能學(xué)會(huì)數(shù)學(xué)
四、檢測(cè)反債達(dá)成目標(biāo)
見(jiàn)學(xué)生用書(shū).
五、課后反思香漏補(bǔ)缺
I收獲:
2存在困惑
第竺___________
課題正數(shù)和負(fù)數(shù)
【學(xué)習(xí)目標(biāo)】生抽象思維能力、歸納能力和概括能力.
1.讓學(xué)生理解正負(fù)數(shù)的意義,會(huì)用正【學(xué)習(xí)重點(diǎn)】
負(fù)數(shù)表示具有相反意義的量;正數(shù)和負(fù)數(shù)的意義,并會(huì)判斷一個(gè)數(shù)是
2.讓學(xué)生借助生活中的實(shí)例理解正負(fù)正數(shù)還是負(fù)數(shù).
數(shù)的意義,體會(huì)引入負(fù)數(shù)的必要性;【學(xué)習(xí)難點(diǎn)】
3.讓學(xué)生通過(guò)正負(fù)數(shù)的學(xué)習(xí),培養(yǎng)學(xué)用正數(shù)和負(fù)數(shù)表示具有相反意義的量.
教學(xué)環(huán)節(jié)指導(dǎo)
行為提示:創(chuàng)設(shè)問(wèn)題,情境導(dǎo)入,結(jié)合生活中的實(shí)際例孑,充分調(diào)動(dòng)學(xué)生的積極性,激
發(fā)學(xué)生求知欲望.(可設(shè)成搶答題型)
行為提示:讓學(xué)生閱讀教材,嘗試完成“自學(xué)互研”的所有內(nèi)容,并適時(shí)給學(xué)生提供幫
助,率先做完的小組內(nèi)互查,大部分學(xué)生完成后,進(jìn)行小組交流.
學(xué)法指導(dǎo):做這一類型的題目:對(duì)于兩個(gè)具有相反意義的量,把哪一種意義的量規(guī)定為
正都帶有任意性.例如:可以規(guī)定存入為正也可以規(guī)定存入為負(fù).
做這一類題應(yīng)注意:填空時(shí)“+”號(hào)不能省略,“一”也不能省略.
學(xué)法指導(dǎo):“十”號(hào)可以省略,“一”號(hào)不能省略.帶“+”號(hào)的數(shù)不一定是正數(shù),如:
+(-1);帶“一”號(hào)的數(shù)不一定是負(fù)數(shù)如一(一1).
一、情景尋入生成問(wèn)題
在下列橫線上填上適當(dāng)?shù)脑~,使其前后意義相反.
1.向東走3米和—向西走_(dá)3米;
2.某地某天最高氣溫是零上12℃,最低氣溫是一零下.2℃:
3.飛機(jī)下降0.6千米和』二升1千米:
4.彈簧伸長(zhǎng)2cm和縮短3cm.
二、自學(xué)互研生成能力
閱讀教材Pio,完成下面的內(nèi)容.
1.相反意義的量是成對(duì)出現(xiàn)的,具有相反意義的量,只要意義相反,而不要求數(shù)量一定
相等.例如:存入100元和支出50元是具有相反意義的量.
2.如果+50米表示向南走50米,那么一40米京示_向北走40米「:向北走一10米表
示向南走10米.
歸納:現(xiàn)實(shí)生活中,像這樣具有相反意義的量還有很多……例如,珠穆朗瑪峰高于海平
面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相反的,“運(yùn)進(jìn)”和
“運(yùn)出”其意義也是相反的,等等.
范例:若把順時(shí)針旋轉(zhuǎn)90。記作+90。,則逆時(shí)針旋轉(zhuǎn)10。應(yīng)記作一10。,+30。表示順
時(shí)針旋轉(zhuǎn)30。,―25°表示逆時(shí)針旋轉(zhuǎn)25。.
仿例:如果水位升高3m時(shí)水位變化記作+3m,那么水位下降3m時(shí)水位變化記作——
3m.
變例:在跳遠(yuǎn)測(cè)試中,合格的標(biāo)準(zhǔn)是4.00米,小明跳出了4.18米,記作+0.18米.若
小華跳出了3.96米,則應(yīng)記作一0.04米.
閱讀教材Pi?!案爬ā焙汀白⒁狻?,完成下面的內(nèi)容.
1.下列各數(shù)中哪些是正數(shù),哪些是負(fù)數(shù)?0呢?
2II
—10,—0.03,—7T,0,+2,一3彳,1.4,+0.3,—3.14,it.
JD44
2?
解:正數(shù):予+2,1.4,+0.3,7C;
負(fù)數(shù):一10,-0.03,一古,-3不一3.14;
0既不是正數(shù),也不是負(fù)數(shù).
學(xué)生指導(dǎo):0是正數(shù)和負(fù)數(shù)的分界線.
行為提示:教師結(jié)合專組反饋的疑難問(wèn)題分配任務(wù),各組展示過(guò)程中,教師引導(dǎo)其他組
進(jìn)行補(bǔ)充、糾錯(cuò)、釋疑,然后進(jìn)行總結(jié)評(píng)分.
展示日林:知識(shí)模塊一展示重點(diǎn)在于讓學(xué)生了解生活中處處存在具有相反意義的量,應(yīng)
學(xué)會(huì)表示;
知識(shí)模塊二展示重點(diǎn)在于能夠從許多的數(shù)中辨認(rèn)誰(shuí)是正數(shù)、負(fù)數(shù)、0;知識(shí)模塊三展示重
點(diǎn)在于會(huì)讀寫一個(gè)正數(shù)、負(fù)數(shù)或0.
2.某藥品說(shuō)明書(shū)上標(biāo)明藥品保存的溫度是(20±2)℃,該藥品在18?22c范圍內(nèi)保存才合
適.
歸納:(1)像一10,—0.03,-3;’—3.14這樣的數(shù)是魚(yú)數(shù),像,,+2,1.4,
+0.3,兀這樣的數(shù)是正數(shù).負(fù)數(shù)有時(shí)也可以說(shuō)成是在正數(shù)的前面加上一個(gè)“一”號(hào)所得
的數(shù),“+”號(hào)或“一”號(hào)我們稱之為—性質(zhì)符號(hào)_.
(2)0既不是數(shù),也不是速[數(shù).
范例:下列各數(shù)中,哪些是正數(shù)?哪些是負(fù)數(shù)?
+2016,—3.1,g,10.58,—9,+1,—45.6,0,—2.14,一;.
解:正數(shù)有:+2016,10.58,+1,+77^:
Z1\1\)
負(fù)數(shù)有:—3.1,—9,—45.6,-2.14,一不
2
1?5-+
仿例:下列各數(shù):3.2,一^一丘,+2.016,-108,10%中,正數(shù)有3.2,
3J
25o一
5
-
2.016,10%;負(fù)數(shù)有_一小
6'
一
范例:(1)+3讀作一正3.:-3讀作負(fù)3.;
(2)正0.6寫作一+0.6一,負(fù);寫作一二3一.
歸納:正數(shù)前面的“+”號(hào)讀、寫都可以省略,而負(fù)數(shù)前面的“一”號(hào)讀、寫都不能省
略.
三、文潴展示生成新知
至疏預(yù)展
I.各小組共同探討“自學(xué)互研”部分,將疑難問(wèn)題板演到黑板上,小組間就上述疑難問(wèn)
題相互釋疑:
2.組長(zhǎng)帶領(lǐng)組員參照展示方案,分配好展示任務(wù),同時(shí)進(jìn)行組內(nèi)小展示,將形成的展示
方案在黑板上進(jìn)行展示.
展東程升
知識(shí)模塊一用正負(fù)數(shù)表示具有相反意義的量
知識(shí)模塊二認(rèn)識(shí)正負(fù)數(shù)
知識(shí)模塊三正數(shù)、負(fù)數(shù)的讀法、寫法
B、檢測(cè)反債達(dá)成日標(biāo)
見(jiàn)學(xué)生用書(shū).
五、課后反思查漏撲缺
1收獲:
2存在困惑
課題有理數(shù)
【學(xué)習(xí)目標(biāo)】3.培養(yǎng)學(xué)生勇于探索的精神,滲透對(duì)
1.讓學(xué)生理解整數(shù)、分?jǐn)?shù)、有理數(shù)的立統(tǒng)一的辨證思想.
概念,并會(huì)判斷一個(gè)給定的數(shù)是整數(shù)、分?jǐn)?shù)【學(xué)習(xí)重點(diǎn)】
或有理數(shù);整數(shù)、分?jǐn)?shù)、有理數(shù)的概念.
2.讓學(xué)生明確有理數(shù)分為整數(shù)和分?jǐn)?shù),【學(xué)習(xí)難點(diǎn)】
同時(shí)也可以分為正有理數(shù)、0和負(fù)有理數(shù),正確說(shuō)出給出的數(shù)屬于的集合.
培養(yǎng)學(xué)生觀察、比較和概括的思維能力;
教學(xué)環(huán)節(jié)指導(dǎo)
行為提示:創(chuàng)設(shè)問(wèn)題,情境導(dǎo)入,結(jié)合生活中的實(shí)際例子,充分調(diào)動(dòng)學(xué)生的積極性,激
發(fā)學(xué)生求知欲望.(可設(shè)成搶答題型)
行為提示:讓學(xué)生閱讀教材,嘗試完成“自學(xué)互研”的所有內(nèi)容,并適時(shí)給學(xué)生提供幫
助,率先做完的小組內(nèi)互查,大部分學(xué)生完成后,進(jìn)行小組交流.
知M鏈接;
1.有限小數(shù)和無(wú)限小數(shù)都可以化為分?jǐn)?shù),所以我們稱它們?yōu)橛欣頂?shù);
2.所有正整數(shù)組成正整數(shù)集合,所有負(fù)整數(shù)組成負(fù)整數(shù)集合;
3.集合中的“…”表示填入的數(shù)只是集合的一部分;
4.0和正數(shù)叫做非負(fù)數(shù),0和負(fù)數(shù)叫做非正數(shù).
學(xué)決指導(dǎo):在討論有理數(shù)的分類問(wèn)題時(shí),一定不要忽略0;其次,應(yīng)從定義和性質(zhì)兩方
面入手,當(dāng)然,其他分類只要合理即可.
一、情景導(dǎo)入生成問(wèn)題
1.上一節(jié)我們學(xué)習(xí)了哪些內(nèi)容?
正數(shù)和負(fù)數(shù);用正數(shù)和負(fù)數(shù)表示具有相反意義的量:“0”不再僅僅表示沒(méi)有,在計(jì)數(shù)中有
實(shí)際意義;()既不是正數(shù),也不是負(fù)數(shù).
2.每袋糧食標(biāo)準(zhǔn)重量是50千克,甲、乙、丙三袋糧食的重量分別為52千克、49千克
和49.8千克,如果超過(guò)標(biāo)淮重量的部分用正數(shù)表示,那么甲、乙、丙三袋糧食重量的記錄分
別為一+2千克、一1千克、一0.2千克.
二、力學(xué)互研生成能力
閱讀教材P”?PI2,完成下面的內(nèi)容.
1.—止整數(shù)_、—零―和—負(fù)整數(shù)—統(tǒng)稱為整數(shù);(注意:自然數(shù)也是整數(shù))
2.正分?jǐn)?shù)一和一負(fù)分?jǐn)?shù)—統(tǒng)稱為分?jǐn)?shù):(注意:沒(méi)有0)
3._^>_和^1統(tǒng)稱為有理數(shù),
范例:把0.35,0,-1.04,100,兀,y,-1,一3,1.3填在相應(yīng)的大括號(hào)內(nèi).
正整數(shù){100,…};
負(fù)分?jǐn)?shù){—1.04,-y…};
非負(fù)有理數(shù){0.35,0,100,y,1.3,???};
非正有理數(shù){0,-1.04,-1,-3,
仿例:零是(A)
A.最大的非正有理數(shù)B.最小的整數(shù)
C.最小的非正有理數(shù)D.最小的有理數(shù)
變例:既是分?jǐn)?shù)又是正數(shù)的是(D)
A.+2B.一MC.0D.2.4
歸納:有理數(shù)的概念可以從兩個(gè)方面理解:(1)整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù);(2)有限小數(shù)(包
括整數(shù))和無(wú)限小數(shù)統(tǒng)稱有理數(shù).
(1)按定義分類:
kpE整數(shù)
整數(shù)■零
有理數(shù)〈〔負(fù)整數(shù)
[正分?jǐn)?shù)
分?jǐn)?shù)
II負(fù)分?jǐn)?shù)
學(xué)法指導(dǎo):按照有理數(shù)的知識(shí)把數(shù)填入相應(yīng)的大括號(hào)時(shí)不能混清.
行為提示:教師結(jié)合各組反饋的疑難問(wèn)題分配任務(wù),各組展示過(guò)程中,教師引導(dǎo)其他組
進(jìn)行補(bǔ)充、糾錯(cuò)、釋疑,然后進(jìn)行總結(jié)評(píng)分.
莪示目標(biāo):知識(shí)模塊一展示重點(diǎn)在于讓學(xué)生理解并等握有理數(shù)的概念;
知識(shí)模塊二展示重點(diǎn)在于讓學(xué)生理解并掌握有理數(shù)的兩種分類方法:按性質(zhì)和定義進(jìn)行
分類.
(2)按性質(zhì)分:
正整數(shù)
正有理數(shù)
正分?jǐn)?shù)
有理數(shù)《零
負(fù)整數(shù)
負(fù)有理數(shù)J
負(fù)分?jǐn)?shù)
范例:把下列各數(shù)填入相應(yīng)的括號(hào)內(nèi).
4
O1233-63
-5-7,210,0.031,-0.618,-10%,0.12
4
正數(shù){+5,3予6.3,210,0.031,0.12,
整數(shù){+5,-50,0,-7,210,
4
-3
非負(fù)數(shù){+5,V6.210,0.031,0.12,
II?
負(fù)分?jǐn)?shù){-5,-TV-0.618,-10%,…}.
仿例:下列說(shuō)法中不正確的是(C)
A.-3.14既是負(fù)數(shù)、分?jǐn)?shù),也是有理數(shù)
B.0既不是正數(shù),也不是負(fù)數(shù),但是整數(shù)
C.—2016既是負(fù)數(shù),也是整數(shù),但不是有理數(shù)
D.。是非負(fù)數(shù)
2
變例:給出下列說(shuō)法:①0是整數(shù);②一2t是負(fù)分?jǐn)?shù);③2.1不是正數(shù);④自然數(shù)一定是
正數(shù):⑤負(fù)分?jǐn)?shù)一定是負(fù)有理數(shù).其中正確的是(C)
A.I個(gè)B,2個(gè)C.3個(gè)D.4個(gè)
三、交談?wù)故旧尚轮?/p>
亥傀披屐
1.各小組共同探討“自學(xué)互研”部分,將疑難問(wèn)題板演到黑板上,小組間就上述疑難問(wèn)
題相互釋疑;
2.組長(zhǎng)帶領(lǐng)組員參照展示方案,分配好展示任務(wù),同時(shí)進(jìn)行組內(nèi)小展示,將形成的展示
方案在黑板上進(jìn)行展示.
屐市提升
知識(shí)模塊一有理數(shù)的相關(guān)概念
知識(shí)模塊二有理數(shù)的分類
0、檢測(cè)反債達(dá)成目標(biāo)
見(jiàn)學(xué)生用書(shū).
五、課后反思查漏補(bǔ)缺
1收獲:
2存在困惑
課題數(shù)軸在數(shù)軸上比較有理數(shù)的大小
【學(xué)習(xí)目標(biāo)】【學(xué)習(xí)重點(diǎn)】
1.讓學(xué)生了解數(shù)軸的概念,理解數(shù)軸數(shù)軸的概念和有理數(shù)在數(shù)軸上的表示
三要素的作用,會(huì)準(zhǔn)確地畫出數(shù)軸;方法.
2.讓學(xué)生會(huì)用數(shù)軸上的點(diǎn)表示有理數(shù),【學(xué)習(xí)難點(diǎn)】
了解有理數(shù)與數(shù)軸上的點(diǎn)之間的對(duì)應(yīng)關(guān)系,有理數(shù)與數(shù)軸上的點(diǎn)的對(duì)應(yīng)關(guān)系以及
體會(huì)數(shù)形結(jié)合的思想.明確數(shù)軸上的點(diǎn)表示數(shù)形結(jié)合的思想.
的數(shù)從左到右不斷地增大;
3.通過(guò)數(shù)軸的學(xué)習(xí),初步體會(huì)對(duì)應(yīng)的
思想.
教學(xué)環(huán)節(jié)指導(dǎo)
行為提示:創(chuàng)設(shè)問(wèn)題情境導(dǎo)入,結(jié)合生活中的實(shí)際例子,充分調(diào)動(dòng)學(xué)生的積極性,激發(fā)
學(xué)生求知欲望.(可設(shè)成搶答題型)
行為提示:讓學(xué)生閱讀教材,嘗試完成''自學(xué)互研”的所有內(nèi)容,并適時(shí)給學(xué)生提供幫
助,率先做完的小組內(nèi)互查,大部分學(xué)生完成后,進(jìn)行小組交流.
行為提示:液面所在的刻度表示此時(shí)的溫度,這說(shuō)明溫度計(jì)上的刻度與一些有理數(shù)建立
了對(duì)應(yīng)的關(guān)系,也就是說(shuō),溫度計(jì)上的每一個(gè)刻度都表示一個(gè)有理數(shù).
學(xué)法相導(dǎo):做這一類題要注重?cái)?shù)軸的定義.
一、情景導(dǎo)入生成問(wèn)題
請(qǐng)大家看一看,這是一支溫度計(jì),它的用途大家都知道.你會(huì)讀溫度計(jì)嗎?請(qǐng)同學(xué)們讀
出此時(shí)溫度計(jì)所顯示的溫度.
CC
555454
4401?5'
,5354'3
33(rM
1.352532'2
222?
a15h1
1155
()J—
卜
2
二、自學(xué)互研生成能力
閱讀教材Pl5?Pl6,完成下面的內(nèi)容.
1.什么是數(shù)軸?
2.數(shù)軸的三要素是什么?
歸納:(1)規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線叫做數(shù)軸;
(2)數(shù)軸三要素:原點(diǎn)、正方向和單位長(zhǎng)度,缺一不可.
范例:下列所畫的數(shù)軸中,正確的是(D)
II1IIIII11III1111r1I11II.
123456-2-10123-2-1012-2-10123
ABCD
仿例:下列各圖,所畫數(shù)軸正確的是(D)
I1I111j1I1I|[-1I1I1I,
-3-2-1123-1-20123-2-10321-2-10123
ABCD
變例:下列說(shuō)法正確的是(B)
A.數(shù)軸是一條射線
B.任何一個(gè)有理數(shù)都可以用數(shù)軸上的點(diǎn)表示
C.有些有理數(shù)不能在數(shù)軸上表示
D.數(shù)軸上兩個(gè)不同的點(diǎn)可以表示同一個(gè)有理數(shù)
閱讀教材Pis?Pm,完成下面的內(nèi)容.
如何將所給的有理數(shù)在數(shù)軸上表示呢?
歸納:畫數(shù)軸并在數(shù)軸上表示所給數(shù)的點(diǎn)的位置的步驟:
(1)在直線上任取一個(gè)點(diǎn)表示數(shù)0,這個(gè)點(diǎn)叫做原點(diǎn);
(2)通常規(guī)定直線上從原點(diǎn)向右(或向上)為正方向,從原點(diǎn)向左(或向下)為負(fù)方向;
(3)選取適當(dāng)?shù)拈L(zhǎng)度為單位長(zhǎng)度,直線上從原點(diǎn)向右每隔一個(gè)單位長(zhǎng)度取一個(gè)點(diǎn),依次表
示1,2,3…;從原點(diǎn)向左,用類似的方法依次表示一1,—2,—3…;
(4)在所要表示數(shù)的地方畫上實(shí)心圓點(diǎn),并將這個(gè)數(shù)寫在圓點(diǎn)的上方.
學(xué)法指導(dǎo):
1.數(shù)軸上的點(diǎn)被原點(diǎn)分為兩個(gè)區(qū)域,原點(diǎn)左側(cè)為負(fù)數(shù)區(qū)域,原點(diǎn)右側(cè)為正數(shù)區(qū)域;
2.在數(shù)軸上表示數(shù),首先確定點(diǎn)的大致位置,最后在數(shù)軸上標(biāo)出數(shù)字.
行為提示:教師結(jié)合各組反饋的疑難問(wèn)題分配任務(wù),各組展示過(guò)程中,教師引導(dǎo)其他組
進(jìn)行補(bǔ)充、糾錯(cuò)、釋疑,然后進(jìn)行總結(jié)評(píng)分.
展示目標(biāo):知識(shí)模塊一展示重點(diǎn)在于讓學(xué)生理解并掌握數(shù)軸的定義和三要素;
知識(shí)模塊二展示重點(diǎn)在于讓學(xué)生能夠?qū)⑺o的點(diǎn)在數(shù)軸上表示出來(lái);
知識(shí)模塊三展示重點(diǎn)在于讓學(xué)生能夠找到數(shù)軸上的點(diǎn)表示的有理數(shù);
知識(shí)模塊四展示重點(diǎn)在于讓學(xué)生掌握用數(shù)軸比較有理數(shù)大小的法則.
95
-S-5-
范例:在數(shù)軸上畫出表示下列各數(shù)的點(diǎn):一3,2,-3.2
2J
解:如圖所示:
.95
2-3-0.5223.5
I■f?J?I.[?J?■
-6-5-4-3-2-10123456
范例:如圖所示,M點(diǎn)表示的數(shù)是(C)
1.1111I
-3-2-1012
A.2.5B.-1.5C.-2.5D.1.5
仿例:指出數(shù)軸上點(diǎn)A、B、C、。分別表示什么數(shù).
ABCD
J__、1,I----------L_?_l__L-?.
-3-2-10I234
A點(diǎn)表示一2一:B點(diǎn)表示0-;C點(diǎn)表示25;D點(diǎn)表示4.
變例:數(shù)軸上點(diǎn)八向左移動(dòng)4個(gè)單位長(zhǎng)度得到點(diǎn)8,則點(diǎn)B表示的數(shù)是二2.
BA
-4------------1------------
02
閱讀教材Pl7,完成下面的內(nèi)容.
BA
1111
h-I0a
范例:點(diǎn)4、8在數(shù)粕上的位置如圖,它們分別表示數(shù)a、b,用“V”將a,b,-1,1
排列起來(lái).
解:由圖可知:b<—1<?<1.
歸納:(I)在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;
(2)正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)都大于負(fù)數(shù).
變例:用填空.
(1)-6—工3:(2)-5<0;
(3)JS_—g;(4)--3;.
三、交流展示生成新知
去洗披屐
1.各小組共同探討“自學(xué)互研”部分,將疑難問(wèn)題板演到黑板上,小組間就上述疑難問(wèn)
題相互釋疑;
2.組長(zhǎng)帶領(lǐng)組員參照展示方案,分配好展示任務(wù),同時(shí)進(jìn)行組內(nèi)小展示,將形成的展示
方案在黑板上進(jìn)行展示.
屐市提升
知識(shí)模塊一數(shù)軸
知識(shí)模塊二在數(shù)軸上表示已知有理數(shù)
知識(shí)模塊三求出數(shù)軸上已知點(diǎn)表示的數(shù)
知識(shí)模塊四在數(shù)軸上比較數(shù)的大小
8、檢測(cè)反饋達(dá)成目林
見(jiàn)學(xué)生用書(shū).
五、課后反思查漏撲缺
1收獲:
2存在困惑
課題相反數(shù)
【學(xué)習(xí)目標(biāo)】【學(xué)習(xí)重點(diǎn)】
1.讓學(xué)生了解相反數(shù)的概念;相反數(shù)的概念及其表示方法,理解代數(shù)
2.讓學(xué)生會(huì)在數(shù)軸上表示兩個(gè)互為相定義和幾何定義的一致性,對(duì)簡(jiǎn)化符號(hào)能正
反數(shù)的數(shù),并且發(fā)現(xiàn)表示互為相反數(shù)的兩點(diǎn)確應(yīng)用.
在原點(diǎn)的兩側(cè),到原點(diǎn)的距離相等;【學(xué)習(xí)難點(diǎn)】
3.利用互為相反數(shù)符號(hào)表示方法化簡(jiǎn)負(fù)數(shù)的相反數(shù)的表示方法與化簡(jiǎn)多重
多重符號(hào),體會(huì)數(shù)學(xué)符號(hào)化和數(shù)形結(jié)合思符號(hào).
想.
教學(xué)環(huán)節(jié)指導(dǎo)
行為提示:創(chuàng)設(shè)問(wèn)題,情境導(dǎo)入,結(jié)合生活中的實(shí)際例子,充分調(diào)動(dòng)學(xué)生的積極性,激
發(fā)學(xué)生求知欲望.(可設(shè)成搶答題型)
行為提示:讓學(xué)生閱讀教材,嘗試完成“自學(xué)互研”的所有內(nèi)容,并適時(shí)給學(xué)生提供幫
助,率先做完的小組內(nèi)互查,大部分學(xué)生完成后,進(jìn)行小組交流.
學(xué)法指導(dǎo):互為相反數(shù)都是成對(duì)出現(xiàn)的.
知竊隹接:互為相反數(shù)的符號(hào)語(yǔ)言:.明”互為相反數(shù)=。+力=0.
做這一類題應(yīng)注意:正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù),非正數(shù)的相反數(shù)是非
負(fù)數(shù),非負(fù)數(shù)的相反數(shù)是非正數(shù).一、精景導(dǎo)入生成問(wèn)題
1.數(shù)軸的三要素是什么?
答:原點(diǎn)、單位長(zhǎng)度、正方向.
2.將一1.5,—1,-0.5,0.5,I,1.5在數(shù)軸上表示出來(lái),并用連接起來(lái).
解:如圖所示:
-1.5-1-0.50.5115
—1-----1?▲?i——If
-3-2-1012
-1.5<-1<-0.5<0.5<1<1.5.
3.觀察上圖并填空:數(shù)軸上與原點(diǎn)距離是1個(gè)單位長(zhǎng)度的點(diǎn)有2個(gè),這些點(diǎn)表示的
數(shù)是±1,與原點(diǎn)距離是1.5個(gè)單位長(zhǎng)度的點(diǎn)有2個(gè),這些點(diǎn)表示的數(shù)是±1.5.
二、自學(xué)互研生成能力
閱讀教材Pl9?P2I,完成下面的內(nèi)容.
1.判斷正誤:
(1)-3是3的相反數(shù):2是一2的相反數(shù);(V)
(2)-3是相反數(shù),2是相反數(shù):(X)
(3)4是〃的相反數(shù).(X)
2.10的相反數(shù)是一一10.;a的相反數(shù)是――〃_;0相反數(shù)是0:
3.數(shù)軸上與原點(diǎn)距離是8個(gè)單位長(zhǎng)度的點(diǎn)有2個(gè),這些點(diǎn)袤示的數(shù)是±8,它們
分別在_原點(diǎn)―的左右.
歸納:(1)像一3和3、2和一2那樣,只有_正負(fù)號(hào)「不同的兩個(gè)數(shù)稱一互為相反數(shù);
(相反數(shù)的代數(shù)意義)
(2)在數(shù)軸上表示互為相反數(shù)的兩個(gè)點(diǎn)分別位于原點(diǎn)的兩旁,且與原點(diǎn)的距離相等.;
(相反數(shù)的幾何意義)
(3)一般地,“和_一色互為相反數(shù),特別地,0的相反數(shù)是0.所有的相反數(shù)都是
一成對(duì).出現(xiàn)的.
范例:一(的相反數(shù)是-3的相反數(shù)是3:2016的相反數(shù)是一2016:0的
相反數(shù)是_0_;_0.6的相反數(shù)是06:兀的相反數(shù)是—-7t.
學(xué)法指導(dǎo):判斷數(shù)軸上的兩個(gè)點(diǎn)所表示的數(shù)是否互為相反數(shù),就要看它們是否滿足兩個(gè)
條件:一是點(diǎn)在原點(diǎn)的兩側(cè);二是點(diǎn)到原點(diǎn)的距離相等.
行為提示:教師結(jié)合各組反饋的疑難問(wèn)題分配任務(wù),各組展示過(guò)程中,教師引導(dǎo)其他組
進(jìn)行補(bǔ)充、糾錯(cuò)、釋疑,然后進(jìn)行總結(jié)評(píng)分.
展示目標(biāo):知識(shí)模塊一展示重點(diǎn)在于讓學(xué)生理解并莒握相反數(shù)的概念;
知識(shí)模塊二展示重點(diǎn)在于讓學(xué)生知道多重符號(hào)的結(jié)縣由“一”號(hào)的個(gè)數(shù)決定:奇負(fù)偶正,
利用它化簡(jiǎn)多重符號(hào).仿例:1.在數(shù)軸上離原點(diǎn)4.5個(gè)單位長(zhǎng)度的點(diǎn)所表示的數(shù)是
±4.5,它們的關(guān)系是一互為相反數(shù)一.
2.如果一個(gè)數(shù)的相反數(shù)不大于它本身,那么這個(gè)數(shù)是(D)
A.正數(shù)B.負(fù)數(shù)C.非正數(shù)D.非負(fù)數(shù)
變例:1.在數(shù)軸上,若點(diǎn)A和點(diǎn)8分別表示互為相反數(shù)的兩個(gè)數(shù),并且這兩個(gè)點(diǎn)之間的
距離為16.8,則這兩點(diǎn)表示的數(shù)分別是一8.4,8.4.
2.如圖,點(diǎn)A、B、a。表示的數(shù)中,互為相反數(shù)的兩個(gè)點(diǎn)是(C)
ABCD
4_I_I_I____
-6-2026
A.點(diǎn)A和點(diǎn)AB.點(diǎn)8和點(diǎn)C
C.點(diǎn)A和點(diǎn)。D.點(diǎn)8和點(diǎn)。
閱讀教材P2I例2,完成下面的內(nèi)容.
范例:化簡(jiǎn)下列各數(shù).
⑴一(+3);(2)—(—2);⑶—(+〃);(4)+(一4);
解:(1)原式=-3;(2)原式=2:(3)原式=一〃;(4)原式=一。
仿例:如果。=+2.5,那么一”=—2.5,如果一。=4,那么一(一〃)=-4.
變例:化簡(jiǎn)下列各數(shù).
(1)-[+(-4)]=4;⑵-L(—20)1=-20;
⑶+{-[+(-15)]}=3:(4)-{-[-(-7)])=7.
歸納:在一個(gè)數(shù)的前面加上一個(gè)“+”號(hào),所得的數(shù)還是原來(lái)的數(shù);在一個(gè)數(shù)的前面加
上一個(gè),,一”號(hào),所得的數(shù)是這個(gè)數(shù)的相反數(shù);當(dāng)一個(gè)數(shù)的前面的符號(hào)至少為3個(gè)時(shí),化簡(jiǎn)
的依據(jù)是一奇負(fù)偶正_.
三、文流展示生成新知
次傀預(yù)展
1.各小組共同探討“自學(xué)互研”部分,將疑難問(wèn)題板演到黑板上,小組間就上述疑難問(wèn)
題相互釋疑;
2.組長(zhǎng)帶領(lǐng)組員參照展示方案,分配好展示任務(wù),同時(shí)進(jìn)行組內(nèi)小展示,將形成的展示
方案在黑板上進(jìn)行展示.
屐方提升
知識(shí)模塊一相反數(shù)的意義和性質(zhì)
知識(shí)模塊二多重符號(hào)的化簡(jiǎn)
8、檢測(cè)反饋達(dá)成目標(biāo)
見(jiàn)學(xué)生用書(shū).
五、課后反思查漏補(bǔ)缺
1收獲:
2存在困惑
課題絕對(duì)值
【學(xué)習(xí)目標(biāo)】值解決實(shí)際問(wèn)題,體會(huì)絕對(duì)值的意義和作
1.讓學(xué)生能根據(jù)一個(gè)數(shù)的絕對(duì)值表示用.
“距離”,初步理解絕對(duì)值的概念;【學(xué)習(xí)重點(diǎn)】
2.讓學(xué)生學(xué)會(huì)求一個(gè)數(shù)的絕對(duì)值,滲絕對(duì)值的概念和求一個(gè)數(shù)的絕對(duì)值.
透數(shù)形結(jié)合的思想;【學(xué)習(xí)難點(diǎn)】
3.學(xué)會(huì)絕對(duì)值的計(jì)算,并能應(yīng)用絕對(duì)絕對(duì)值的幾何意義和代數(shù)意義.
教學(xué)環(huán)節(jié)指導(dǎo)
行為提示:創(chuàng)設(shè)問(wèn)題,情境導(dǎo)入,結(jié)合生活中的實(shí)際例子,充分調(diào)動(dòng)學(xué)生的積極性,激
發(fā)學(xué)生求知欲望.(可設(shè)成搶答題型)
行為提示;讓學(xué)生閱讀教材,嘗試完成“自學(xué)互研”的所有內(nèi)容,并適時(shí)給學(xué)生提供幫
助,率先做完的小組內(nèi)互查,大部分學(xué)生完成后,進(jìn)行小組交流.
知也鏈接:
1.數(shù)軸的三要素:原點(diǎn)、正方向、單位長(zhǎng)度;
2.數(shù)軸上除。以外,到原點(diǎn)的距離相等的點(diǎn)有兩個(gè),分布在原點(diǎn)的兩側(cè),且它們互為相
反數(shù).
做這一類爽應(yīng)注意:
1.一個(gè)正數(shù)的絕對(duì)值是它本身;
2.一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);
3.0的絕對(duì)值是0.
做這一題應(yīng)注意:
a(?>0)
。(〃=0)一、情景導(dǎo)入生成問(wèn)題.
{-a(〃<0)
兩輛汽車從同一處。出發(fā),分別向東、西方向行駛10km,到達(dá)A、8兩處,如圖所示,
它們的行駛路線相同嗎?它們行駛路程的遠(yuǎn)近(線段04、08的長(zhǎng)度)相同嗎?
B汽車甲O汽車乙A/.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版船舶制造與交付使用合同3篇
- 2025年度高新技術(shù)產(chǎn)業(yè)園區(qū)合同承包協(xié)議書(shū)
- 小學(xué)四年級(jí)數(shù)學(xué)幾百幾十?dāng)?shù)乘以一位數(shù)水平檢測(cè)口算題帶答案
- 2025版居間合同樣本-環(huán)保技術(shù)交易居間代理服務(wù)合同3篇
- 二零二五年度小區(qū)電梯廣告創(chuàng)意策劃與執(zhí)行合同
- 2024年標(biāo)準(zhǔn)型風(fēng)管產(chǎn)品銷售合同樣本一
- 工程合同管理措施
- 2024年現(xiàn)代化養(yǎng)殖雞場(chǎng)租賃與環(huán)保責(zé)任協(xié)議書(shū)3篇
- 2024年砂石子采購(gòu)合同中的付款方式與期限規(guī)定
- 2024年版權(quán)轉(zhuǎn)讓合同范本:文學(xué)作品授權(quán)3篇
- 湖南省雅禮教育集團(tuán)2023-2024學(xué)年高二上學(xué)期期末英語(yǔ)試卷 含解析
- 2024年7月國(guó)家開(kāi)放大學(xué)法學(xué)本科《知識(shí)產(chǎn)權(quán)法》期末考試試題及答案
- 北京市西城區(qū)2022-2023學(xué)年六年級(jí)上學(xué)期數(shù)學(xué)期末試卷(含答案)
- 2024秋期國(guó)家開(kāi)放大學(xué)本科《經(jīng)濟(jì)學(xué)(本)》一平臺(tái)在線形考(形考任務(wù)1至6)試題及答案
- 上海市住院醫(yī)師規(guī)范化培訓(xùn)公共科目考試題庫(kù)-重點(diǎn)傳染病防治知識(shí)
- 2024智能變電站新一代集控站設(shè)備監(jiān)控系統(tǒng)技術(shù)規(guī)范部分
- 抵押貸款行業(yè)可行性分析報(bào)告
- MOOC 微觀經(jīng)濟(jì)學(xué)-浙江大學(xué) 中國(guó)大學(xué)慕課答案
- (高清版)TDT 1018-2008 建設(shè)用地節(jié)約集約利用評(píng)價(jià)規(guī)程
- 四年級(jí)上冊(cè)道法知識(shí)點(diǎn)匯總
- JGJ_T491-2021裝配式內(nèi)裝修技術(shù)標(biāo)準(zhǔn)(高清-最新版)
評(píng)論
0/150
提交評(píng)論