專題45 中考解答題最??碱}型數(shù)據(jù)的搜集與數(shù)據(jù)的分析(解析版)_第1頁
專題45 中考解答題最常考題型數(shù)據(jù)的搜集與數(shù)據(jù)的分析(解析版)_第2頁
專題45 中考解答題最??碱}型數(shù)據(jù)的搜集與數(shù)據(jù)的分析(解析版)_第3頁
專題45 中考解答題最??碱}型數(shù)據(jù)的搜集與數(shù)據(jù)的分析(解析版)_第4頁
專題45 中考解答題最??碱}型數(shù)據(jù)的搜集與數(shù)據(jù)的分析(解析版)_第5頁
已閱讀5頁,還剩36頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

專題45中考解答題最??碱}型數(shù)據(jù)的搜集整理與數(shù)據(jù)的分析(解析版)

模塊一2022中考真題集訓

類型一數(shù)據(jù)的收集與整理

1.(2022?無錫)某校研究性學習小組根據(jù)某居民家庭全年消費支出的統(tǒng)計數(shù)據(jù),制作了2021年消費支出

條形圖(單位:元)和預計2022年消費支出扇形圖(如圖).預計2022年該居民家庭全年消費支出比

2021年消費支出提高10%.解答下列問題:

(1)2022年的“其他類消費支出”與2021年的“其他類消費支出”哪一年高?

(2)預計2022年“養(yǎng)生支出”為26400元,則b=20.

(3)預計2022年“教育支出”比2021年減少多少元?

思路引領:(1)根據(jù)“預計2022年該居民家庭全年消費支出比2021年消費支出提高10%“求出預計2022

年該居民家庭全年消費支出,再列式計算2022年的“其他類消費支出”,比較可得答案;

(2)由2022年“養(yǎng)生支出”為26400元,列式算出2022年“養(yǎng)生支出”的百分比,即可得到答案;

(3)先求出2022年“教育支出”,再用2021年“教育支出”減去2022年“教育支出”即可.

解:(1)∵預計2022年該居民家庭全年消費支出比2021年消費支出提高10%,

∴2022年該居民家庭全年消費支出為(54200+12000+18000+11000+24800)×(1+10)%=132000(元),

∴2022年的“其他類消費支出”是132000×22%=29040(元),

而29040>24800,

∴2022年的“其他類消費支出”高;

(2)由(1)知,2022年該居民家庭全年消費支出為132000元,

100%=20%,

26400

×

1∴3b2=00200,

故答案為:20;

第1頁共41頁更多資料加微信:.

(3)預計2022年“教育支出”為132000×(1﹣40%﹣8%﹣20%﹣22%)=13200(元),

∵18000﹣13200=4800(元),

∴預計2022年“教育支出”比2021年減少4800元.

總結提升:本題考查扇形統(tǒng)計圖和條形統(tǒng)計圖,解題的關鍵是讀懂題意,能從統(tǒng)計圖中獲取有用的信息.

2.(2022?德州)某中學計劃以“愛護眼睛,你我同行”為主題開展四類活動,分別為A:手抄報;B:演

講;C:社區(qū)宣傳;D:知識競賽,為了解全校學生最喜歡的活動(每人必選一項)的情況,隨機調(diào)查了

部分學生,根據(jù)調(diào)查結果繪制了兩幅不完整的統(tǒng)計圖:

請根據(jù)以上信息,解答下列問題:

(1)本次共調(diào)查了100名學生;

(2)請將條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,D類活動對應扇形的圓心角為多少度?

(4)若該校有1500名學生,估計該校最喜歡C類活動的學生有多少?

思路引領:(1)由A的人數(shù)及其所占百分比可得總人數(shù);

(2)根據(jù)四個活動人數(shù)之和等于總人數(shù)可得C人數(shù),從而補全圖形;

(3)360°乘以樣本中D人數(shù)所占百分比即可;

(4)用1500乘以C類活動的百分比即可.

解:(1)本次共調(diào)查的學生有20÷20%=100(名);

故答案為:100;

(2)C對應人數(shù)為100﹣(20+10+30)=40(名),

補全條形圖如下:

(3)360°100%=108°,

30

×100×

第2頁共41頁更多資料加微信:.

∴D類活動對應扇形的圓心角為108度;

(4)1500600(名),

40

答:估計該×校10最0喜=歡C類活動的學生有600名.

總結提升:本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題

的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).

3.(2022?淮安)某校計劃成立學生體育社團,為了解學生對不同體育項目的喜愛情況,學校隨機抽取了部

分學生進行“我最喜愛的一個體育項目”問卷調(diào)查,規(guī)定每人必須并且只能在“籃球”“足球”“乒乓球”

“健美操”“跑步”五個項目中選擇一項,并根據(jù)統(tǒng)計結果繪制了兩幅不完整的統(tǒng)計圖.

請解答下列問題:

(1)在這次調(diào)查中,該校一共抽樣調(diào)查了200名學生,扇形統(tǒng)計圖中“跑步”項目所對應的扇形圓

心角的度數(shù)是72°;

(2)請補全條形統(tǒng)計圖;

(3)若該校共有1200名學生,試估計該校學生中最喜愛“籃球”項目的人數(shù).

思路引領:(1)根據(jù)選擇乒乓球的人數(shù)和所占的百分比,可以求得本次調(diào)查的人數(shù),根據(jù)條形統(tǒng)計圖中

的數(shù)據(jù),可以計算出在扇形統(tǒng)計圖中,“跑步”項目所對應的扇形圓心角的度數(shù);

(2)根據(jù)(1)中的結果和條形統(tǒng)計圖中的數(shù)據(jù),可以計算出選擇足球的人數(shù),從而可以將條形統(tǒng)計圖

補充完整;

(3)用1200乘以“籃球”項目的百分比即可.

解:(1)60÷30%=200(名),

在扇形統(tǒng)計圖中,“跑步”項目所對應的扇形圓心角的度數(shù)是360°72°,

40

故答案為:200,72;×200=

(2)選擇足球的學生有:200﹣30﹣60﹣20﹣40=50(人),

第3頁共41頁更多資料加微信:.

補全的條形統(tǒng)計圖如圖所示:

(3)1200180(名),

30

答:估計該×校20學0生=中最喜愛“籃球”項目的有180名.

總結提升:本題考查扇形統(tǒng)計圖、條形統(tǒng)計圖、用樣本估計總體,解答本題的關鍵是明確題意,利用數(shù)

形結合的思想解答.

4.(2022?攀枝花)為提高學生閱讀興趣,培養(yǎng)良好閱讀習慣,2021年3月31日,教育部印發(fā)了《中小學

生課外讀物進校園管理辦法》的通知.某學校根據(jù)通知精神,積極優(yōu)化校園閱讀環(huán)境,推動書香校園建

設,開展了“愛讀書、讀好書、善讀書”主題活動,隨機抽取部分學生同時進行“你最喜歡的課外讀物”

(只能選一項)和“你每周課外閱讀的時間”兩項問卷調(diào)查,并繪制成如圖1,圖2的統(tǒng)計圖.圖1中A

代表“喜歡人文類”的人數(shù),B代表“喜歡社會類”的人數(shù),C代表“喜歡科學類”的人數(shù),D代表“喜

歡藝術類”的人數(shù).已知A為56人,且對應扇形圓心角的度數(shù)為126°.請你根據(jù)以上信息解答下列問

題:

(1)在扇形統(tǒng)計圖中,求出“喜歡科學類”的人數(shù);

(2)補全條形統(tǒng)計圖;

(3)該校共有學生3200人,估計每周課外閱讀時間不低于3小時的人數(shù).

第4頁共41頁更多資料加微信:.

思路引領:(1)根據(jù)A的人數(shù)和所占的百分比,求出調(diào)查的總人數(shù),再乘以“喜歡科學類”的人數(shù)所占

的百分比即可;

(2)先求出每周課外閱讀3:4小時的人數(shù),再補全統(tǒng)計圖即可;

(3)用總人數(shù)乘以每周課外閱讀時間不低于3小時的人數(shù)所占的百分比即可.

解:(1)調(diào)查的總人數(shù)有:56160(人),

126°

÷=

則“喜歡科學類”的人數(shù)有:16306×0(°120%﹣10%)=56(人);

126°

?360°?

(2)每周課外閱讀3:4小時的人數(shù)有:160﹣(5+28+37+50)=40(人),

補全統(tǒng)計圖如下:

(3)根據(jù)題意得:

32001800(人),

40+50

答:估×計1每60周課=外閱讀時間不低于3小時的人數(shù)有1800人.

總結提升:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必

要的信息是解決問題的關鍵.

5.(2022?鎮(zhèn)江)某地交警在一個路口對某個時段來往的車輛的車速進行監(jiān)測,統(tǒng)計數(shù)據(jù)如下表:

車速(km/h)404142434445

頻數(shù)6815a32

其中車速為40、43(單位:km/h)的車輛數(shù)分別占監(jiān)測車輛總數(shù)的12%、32%.

(1)求出表格中a的值;

(2)如果一輛汽車行駛的車速不超過40km/h的10%,就認定這輛車是安全行駛.若一年內(nèi)在該時段通

過此路口的車輛有20000輛,試估計其中安全行駛的車輛數(shù).

第5頁共41頁更多資料加微信:.

思路引領:(1)利用“頻率=頻數(shù)÷總數(shù)”可得樣本容量,再用樣本容量乘32%即可得出a的值;

(2)根據(jù)題意求出安全行駛速度的范圍,再利用樣本估計即可.

解:(1)由題意得:,

6

=50

a=50×32%=16;12%

(2)由題意得出,安全行駛速度小于或等于44km/h,

因為該時段檢測車輛樣本中安全行駛的車輛占總監(jiān)測車輛的占比為,

48

所以估計其中安全行駛的車輛數(shù)為:2000019200(輛).50

48

總結提升:此題考查了頻數(shù)(率)分布表及×用50樣=本估計總體,正確列出算式并掌握運算法則是解答本題

的關鍵.

6.(2022?鞍山)某校開展“凝心聚力頌家鄉(xiāng)”系列活動,組建了四個活動小組供學生參加:A(朗誦),B

(繪畫),C(唱歌),D(征文).學校規(guī)定:每名學生都必須參加且只能參加其中一個活動小組.學校

隨機抽取了部分學生,對其參加活動小組情況進行了調(diào)查.根據(jù)調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計

圖(圖1和圖2).

請根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次共調(diào)查了100名學生,扇形統(tǒng)計圖中“C”對應的圓心角度數(shù)為126°.

(2)請補全條形統(tǒng)計圖.

(3)若該校共有2000名學生,根據(jù)調(diào)查結果,請你估計這所學校參加D活動小組的學生人數(shù).

思路引領:(1)由A的人數(shù)及其所占百分比可得抽查的學生人數(shù);用360°乘“C”所占比例可得扇形統(tǒng)

計圖中“C”對應的圓心角度數(shù);

(2)總人數(shù)減去A、C、D的人數(shù)求得B對應人數(shù),據(jù)此可補全圖形;

第6頁共41頁更多資料加微信:.

(3)總人數(shù)乘以樣本中D的人數(shù)所占比例即可.

解:(1)這次學校抽查的學生人數(shù)是24÷24%=100(名),

扇形統(tǒng)計圖中“C”對應的圓心角度數(shù)為360°=126°.

35

×

故答案為:100;126°;100

(2)B人數(shù)為:100﹣(24+35+16)=25(名),

補全條形圖如下:

(3)2000320(名),

16

答:估計這×所10學0校=參加D活動小組的學生人數(shù)有320名.

總結提升:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必

要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占

總體的百分比大?。?/p>

7.(2022?錦州)某校為了傳承中華優(yōu)秀傳統(tǒng)文化,舉行“薪火傳承育新人”系列活動,組建了四個活動小

組:A(經(jīng)典誦讀),B(詩詞大賽),C(傳統(tǒng)故事),D(漢字聽寫).學校規(guī)定:每名學生必須參加且只

能參加其中一個小組.學校隨機抽取了部分學生,對其參加活動小組的情況進行了調(diào)查.下面圖1和圖

2是根據(jù)調(diào)查結果繪制的不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,解答下列問題:

(1)本次隨機調(diào)查的學生有50名,在扇形統(tǒng)計圖中“C”部分圓心角的度數(shù)為108°;

(2)通過計算補全條形統(tǒng)計圖;

(3)若該校共有1500名學生,請根據(jù)以上調(diào)查結果,估計參加“B”活動小組的人數(shù).

第7頁共41頁更多資料加微信:.

思路引領:(1)由A的人數(shù)及其所占百分比可得總人數(shù),根據(jù)各類型人數(shù)之和等于總人數(shù)求得C的人數(shù),

用360°乘以C人數(shù)所占比例即可得其對應圓心角度數(shù);

(2)據(jù)(1)的數(shù)據(jù)補全圖形即可得;

(3)總人數(shù)乘以B活動小組人數(shù)和所占比例即可.

解:(1)本次調(diào)查的總人數(shù)為10÷20%=50(名),

C活動小組人數(shù)為50﹣(10+5+20)=15(名),

扇形統(tǒng)計圖中,C所對應的扇形的圓心角度數(shù)是360°108°,

15

故答案為:50,108°;×50=

(2)由(1)得C活動小組人數(shù)為15名,

補全圖形如下:

;

(3)估計參加“B”活動小組的人數(shù)有1500150(名).

5

答:估計參加“B”活動小組的150名學生.×50=

總結提升:本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖、用樣本估計總體,解答本題的關鍵是明確題意,利用數(shù)

形結合的思想解答.

8.(2022?安順)國務院教育督導委員會辦公室印發(fā)的《關于組織責任督學進行“五項管理”督導的通知》

指出,要加強中小學生作業(yè)、睡眠、手機、讀物、體質管理.某校數(shù)學社團成員采用隨機抽樣的方法,

第8頁共41頁更多資料加微信:.

抽取了七年級部分學生,對他們一周內(nèi)平均每天的睡眠時間t(單位:小時)進行了調(diào)查,將數(shù)據(jù)整理后

得到下列不完整的統(tǒng)計表:

睡眠時間頻數(shù)頻率

t<730.06

7≤t<8a0.16

8≤t<9100.20

9≤t<1024b

t≥1050.10

請根據(jù)統(tǒng)計表中的信息回答下列問題.

(1)a=8,b=0.48;

(2)請估計該校600名七年級學生中平均每天的睡眠時間不足9小時的人數(shù);

(3)研究表明,初中生每天睡眠時間低于9小時,會影響學習效率.請你根據(jù)以上調(diào)查統(tǒng)計結果,向學

校提出一條合理化的建議.

思路引領:(1)根據(jù)統(tǒng)計表中的數(shù)據(jù),可以計算出本次抽查的人數(shù),然后即可計算出a、b的值;

(2)根據(jù)統(tǒng)計表中的數(shù)據(jù),可以計算出該校600名七年級學生中平均每天的睡眠時間不足9小時的人數(shù);

(3)根據(jù)表格中的數(shù)據(jù),寫出一條合理化建議即可,本題答案不唯一.

解:(1)本次抽取的學生有:3÷0.06=50(人),

a=50×0.16=8,b=24÷50=0.48,

故答案為:8,0.48;

(2)600×(0.06+0.16+0.20)

=600×0.42

=252(人),

答:估計該校600名七年級學生中平均每天的睡眠時間不足9小時的有252人;

(3)根據(jù)表格中的數(shù)據(jù)可知,有接近一半的學生的睡眠時間不足9小時,給學校的建議是:近期組織一

次家長會,就學生們的睡眠時間進行強調(diào),要求家長監(jiān)管好孩子們的睡眠時間,要不少于9小時.

總結提升:本題考查統(tǒng)計表、用樣本估計總體,解答本題的關鍵是明確題意,求出本次調(diào)查的人數(shù).

9.(2022?沈陽)某校積極落實“雙減”政策,將要開設拓展課程.為讓學生可以根據(jù)自己的興趣愛好選擇

最喜歡的課程,進行問卷調(diào)查,問卷設置以下四種選項:A(綜合模型)、B(攝影藝術)、C(音樂鑒賞)、

第9頁共41頁更多資料加微信:.

D(勞動實踐),隨機抽取了部分學生進行調(diào)查,每名學生必須且只能選擇其中最喜歡的一種課程,并將

調(diào)查結果整理繪制成如下不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)此次被調(diào)查的學生人數(shù)為120名;

(2)直接在答題卡中補全條形統(tǒng)計圖;

(3)求拓展課程D(勞動實踐)所對應的扇形的圓心角的度數(shù);

(4)根據(jù)抽樣調(diào)查結果,請你估計該校800名學生中,有多少名學生最喜歡C(音樂鑒賞)拓展課程.

思路引領:(1)根據(jù)選擇A的人數(shù)和所占的百分比,可以計算出本次調(diào)查的學生人數(shù);

(2)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù),即可計算出選擇B的人數(shù),然后即可將條形統(tǒng)計圖補充完整;

(3)用360°乘以D(勞動實踐)所占比例可得答案;

(4)用樣本估計總體即可.

解:(1)此次被調(diào)查的學生人數(shù)為:12÷10%=120(名),

故答案為:120;

(2)選擇B的學生有:120﹣12﹣48﹣24=36(名),

補全的條形統(tǒng)計圖如圖所示;

(3)360°72°,

24

即拓展課程×D1(2勞0=動實踐)所對應的扇形的圓心角的度數(shù)是72°;

(4)800320(名),

48

×120=

第10頁共41頁更多資料加微信:.

答:估計該校800名學生中,有320名學生最喜歡C(音樂鑒賞)拓展課程.

總結提升:本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖、用樣本估計總體、頻數(shù)(率)分布表,解答本題的關鍵

是明確題意,利用數(shù)形結合的思想解答.

10.(2022?聊城)為慶祝中國共產(chǎn)主義青年團成立100周年,學校團委在八、九年級各抽取50名團員開展

團知識競賽,為便于統(tǒng)計成績,制定了取整數(shù)的計分方式,滿分10分.競賽成績?nèi)鐖D所示:

(1)你能用成績的平均數(shù)判斷哪個年級的成績比較好嗎?通過計算說明;

(2)請根據(jù)圖表中的信息,回答下列問題.

眾數(shù)中位數(shù)方差

八年級競賽成781.88

九年級競賽成a8b

①表中的a=8,b=1.56;

②現(xiàn)要給成績突出的年級頒獎,如果分別從眾數(shù)和方差兩個角度來分析,你認為應該給哪個年級頒獎?

(3)若規(guī)定成績10分獲一等獎,9分獲二等獎,8分獲三等獎,則哪個年級的獲獎率高?

思路引領:(1)分別求出兩個年級的平均數(shù)即可;

(2)①分別根據(jù)計眾數(shù)和方差的定義解答即可;

②根據(jù)兩個年級眾數(shù)和方差解答即可;

(3)根據(jù)題意列式計算即可.

解:(1)由題意得:

八年級成績的平均數(shù)是:(6×7+7×15+8×10+9×7+10×11)÷50=8(分),

九年級成績的平均數(shù)是:(6×8+7×9+8×14+9×13+10×6)÷50=8(分),

第11頁共41頁更多資料加微信:.

故用平均數(shù)無法判定哪個年級的成績比較好;

(2)①九年級競賽成績中8分出現(xiàn)的次數(shù)最多,故眾數(shù)a=8分;

九年級競賽成績的方差為:s2[8×(6﹣8)2+9×(7﹣8)2+14×(8﹣8)2+13×(9﹣8)2+6×(10

1

﹣8)2]=1.56,=50×

故答案為:8;1.56;

②如果從眾數(shù)角度看,八年級的眾數(shù)為7分,九年級的眾數(shù)為8分,所以應該給九年級頒獎;如果從方

差角度看,八年級的方差為1.88,九年級的方差為1.56,又因為兩個年級的平均數(shù)相同,九年級的成績

的波動小,所以應該給九年級頒獎;

綜上所述,應該給九年級頒獎.

(3)八年級的獲獎率為:(10+7+11)÷50=56%,

九年級的獲獎率為:(14+13+6)÷50=66%,

∵66%>56%,

∴九年級的獲獎率高.

總結提升:本題主要考查了中位數(shù)、眾數(shù)、方差以及平均數(shù),掌握各個概念和計算方法是解題的關鍵.

11.(2022?貴陽)小星想了解全國2019年至2021年貨物進出口總額變化情況,他根據(jù)國家統(tǒng)計局2022年

發(fā)布的相關信息,繪制了如下的統(tǒng)計圖,請利用統(tǒng)計圖中提供的信息回答下列問題:

(1)為了更好的表現(xiàn)出貨物進出口額的變化趨勢,你認為應選擇折線統(tǒng)計圖更好(填“條形”或

“折線”);

(2)貨物進出口差額是衡量國家經(jīng)濟的重要指標,貨物出口總額超過貨物進口總額的差額稱為貨物進出

口順差,2021年我國貨物進出口順差是4.36萬億元;

(3)寫出一條關于我國貨物進出口總額變化趨勢的信息.

思路引領:(1)根據(jù)條形統(tǒng)計圖能很容易看出數(shù)量的多少;折線統(tǒng)計圖不僅容易看出數(shù)量的多少,而且

第12頁共41頁更多資料加微信:.

能反映數(shù)量的增減變化情況;

(2)用2021年的出口總額減去進口總額即可;

(3)根據(jù)折線統(tǒng)計圖解答即可.

解:(1)為了更好的表現(xiàn)出貨物進出口額的變化趨勢,我認為應選擇折線統(tǒng)計圖更好,

故答案為:折線;

(2)21.73﹣17.37=4.36(萬億元),

即2021年我國貨物進出口順差是4.36萬億元;

故答案為:4.36;

(3)我國貨物進出口總額逐年增加.(答案不唯一).

總結提升:本題考查的是條形統(tǒng)計圖和折線統(tǒng)計圖.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問

題的關鍵.

12.(2022?陜西)某校為了了解本校九年級學生的視力情況,隨機抽查了50名學生的視力,并進行統(tǒng)計,

繪制了如下統(tǒng)計圖.

(1)這50名學生視力的眾數(shù)為4.9,中位數(shù)為4.8;

(2)求這50名學生中,視力低于4.7的人數(shù)占被抽查總人數(shù)的百分比;

(3)若該校九年級共有400名學生,請估計該校九年級學生中,視力不低于4.8的人數(shù).

思路引領:(1)由統(tǒng)計圖可知視力為4.9的有12人,人數(shù)最多,所以眾數(shù)為4.9;總人數(shù)為50,得到中

位數(shù)應為第25與第26個的平均數(shù),而第25個數(shù)和第26個數(shù)都是4.8,即可確定出中位數(shù)為4.8;

(2)用視力低于4.7的人數(shù)除以50,再化為百分數(shù)即可;

(3)用抽查中視力不低于4.8人數(shù)所占的百分比估計400人的情況即可.

解:(1)由統(tǒng)計圖可知眾數(shù)為4.9;共有50人,中位數(shù)應為第25與第26個的平均數(shù),而第25個數(shù)和第

第13頁共41頁更多資料加微信:.

26個數(shù)都是4.8,

∴中位數(shù)是4.8;

故答案為:4.9,4.8;

(2)由統(tǒng)計圖可知,50人中視力低于4.7的有8人,

∴視力低于4.7的人數(shù)占被抽查總人數(shù)的百分比為100%=16%;

8

×

(3)由統(tǒng)計圖可知,50人中視力不低于4.8的有5340人,

∴視力不低于4.8的人數(shù)占被抽查總人數(shù)的百分比為100%=68%,

34

×

∴400名學生中,視力不低于4.8的人數(shù)為400×68%5=0272(人),

答:估計該校九年級學生中,視力不低于4.8的人數(shù)為272人.

總結提升:本題考查的是條形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解

決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).

13.(2022?寧夏)寧夏某枸杞育種改良試驗基地對新培育的甲、乙兩個品種各試種一畝,從兩塊試驗地中

各隨機抽取10棵,對其產(chǎn)量(千克/棵)進行整理分析.下面給出了部分信息:

甲品種:2.0,3.2,3.1,3.2,3.1,2.5,3.2,3.6,3.8,3.9

乙品種:如圖所示

平均數(shù)中位數(shù)眾數(shù)方差

甲品種3.16a3.20.29

乙品種3.163.3b0.15

根據(jù)以上信息,完成下列問題:

(1)填空:a=3.2,b=3.5;

第14頁共41頁更多資料加微信:.

(2)若乙品種種植300棵,估計其產(chǎn)量不低于3.16千克的棵數(shù);

(3)請從某一個方面簡要說明哪個品種更好.

思路引領:(1)利用中位數(shù)和眾數(shù)的定義即可求出;

(2)用300乘以產(chǎn)量不低于3.16千克的百分比即可;

(3)根據(jù)方差可以判斷乙品種更好,產(chǎn)量穩(wěn)定.

解:(1)把甲品種的產(chǎn)量從小到大排列:2.0,2.5,3.1,3.1,3.2,3.2,3.2,3.6,3.8,3.9,中位數(shù)是3.2,

3.2+3.2

=

乙品種的產(chǎn)量3.5千克的最多有3棵,所以眾數(shù)為3.5,2

故答案為:3.2,3.5.

(2)300180(棵);

6

答:估計其×1產(chǎn)0量=不低于3.16千克的棵數(shù)有180棵;

(3)因為甲品種的方差為0.29,乙品種的方差為0.15,

所以乙品種更好,產(chǎn)量穩(wěn)定.

總結提升:本題考查折線統(tǒng)計圖,中位數(shù)、眾數(shù)、方差以及樣本估計總體,理解中位數(shù)、眾數(shù)、方差、

樣本估計總體的方法是正確求解的前提.

14.(2022?南通)為了了解八年級學生本學期參加社會實踐活動的天數(shù)情況,A,B兩個縣區(qū)分別隨機抽查

了200名八年級學生,根據(jù)調(diào)查結果繪制了統(tǒng)計圖表,部分圖表如下:

A,B兩個縣區(qū)的統(tǒng)計表

平均數(shù)眾數(shù)中位數(shù)

A縣區(qū)3.3533

B縣區(qū)3.8542.5

(1)若A縣區(qū)八年級共有約5000名學生,估計該縣區(qū)八年級學生參加社會實踐活動不少于3天的學生

約為3750名;

(2)請對A,B兩個縣區(qū)八年級學生參加社會實踐活動的天數(shù)情況進行比較,作出判斷,并說明理由.

第15頁共41頁更多資料加微信:.

思路引領:(1)A縣區(qū)八年級學生的總人數(shù)乘以不少于3天的學生的百分數(shù);

(2)通過對A,B兩個縣區(qū)八年級學生參加社會實踐活動的天數(shù)的平均數(shù)、眾數(shù)、中位數(shù)情況進行比較,

作出判斷.

解:(1)5000×(30%+25%+15%+5%)=3750(名).

故答案為:3750.

(2)從平均數(shù)和眾數(shù)來看B縣區(qū)好,但從中位數(shù)來看A縣區(qū)好.

總結提升:此題主要考查了用樣本估計總體,利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計

圖,才能作出正確的判斷和解決問題.

15.(2022?賀州)為了落實“雙減”政策,提倡課內(nèi)高效學習,課外時間歸還學生.“鴻志”班為了激發(fā)學

生學習熱情,提高學習成績,采用分組學習方案,每7人分為一小組.經(jīng)過半個學期的學習,在模擬測

試中,某小組7人的成績分別為98,94,92,88,95,98,100(單位:分).

(1)該小組學生成績的中位數(shù)是95分,眾數(shù)是98分;

(2)若成績95分(含95分)以上評為優(yōu)秀,求該小組成員成績的平均分和優(yōu)秀率(百分率保留整數(shù)).

思路引領:(1)將這組數(shù)據(jù)重新排列,再根據(jù)中位數(shù)和眾數(shù)的定義求解即可;

(2)根據(jù)算術平均數(shù)的定義和優(yōu)秀率的概念求解即可.

解:(1)將7人的成績重新排列為88,92,94,95,98,98,100,

所以這組數(shù)據(jù)的中位數(shù)是95分,眾數(shù)是98分,

故答案為:95分,98分;

(2)該組成員成績的平均分為(98+94+92+88+95+98+100)=95(分),

1

×

95分(含95分)以上人數(shù)為47人,

所以優(yōu)秀率為100%≈57%,

4

×

答:該小組成員7成績的平均分為95分,優(yōu)秀率為57%.

第16頁共41頁更多資料加微信:.

總結提升:本題主要考查眾數(shù)、中位數(shù)、算術平均數(shù),解題的關鍵是掌握一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)

據(jù)叫做眾數(shù),將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中

間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)

據(jù)的中位數(shù).

16.(2022?陜西)某校為了了解本校學生“上周內(nèi)做家務勞動所用的時間”(簡稱“勞動時間”)情況,在

本校隨機調(diào)查了100名學生的“勞動時間”,并進行統(tǒng)計,繪制了如下統(tǒng)計表:

組別“勞動時間”t/分鐘頻數(shù)組內(nèi)學生的平均“勞動時間”/分鐘

At<60850

B60≤t<901675

C90≤t<12040105

Dt≥12036150

根據(jù)上述信息,解答下列問題:

(1)這100名學生的“勞動時間”的中位數(shù)落在C組;

(2)求這100名學生的平均“勞動時間”;

(3)若該校有1200名學生,請估計在該校學生中,“勞動時間”不少于90分鐘的人數(shù).

思路引領:(1)利用中位數(shù)的定義解答即可;

(2)根據(jù)平均數(shù)的定義解答即可;

(3)用樣本估計總體即可.

解:(1)把100名學生的“勞動時間”從小到大排列,排在中間的兩個數(shù)均在C組,故這100名學生的

“勞動時間”的中位數(shù)落在C組,

故答案為:C;

(2)(50×8+75×16+105×40+150×36)=112(分鐘),

1

答:這?1=0010名0學×生的平均“勞動時間”為112分鐘;

(3)1200912(人),

40+36

答:估計在×該校10學0生=中,“勞動時間”不少于90分鐘的人數(shù)為912人.

總結提升:本題考查了頻數(shù)(率)分布表.從頻數(shù)(率)分布表中得到必要的信息是解決問題的關鍵.用

到的知識點為:總體數(shù)目=部分數(shù)目÷相應百分比.

17.(2022?株洲)某校組織了一次“校徽設計”競賽活動,邀請5名老師作為專業(yè)評委,50名學生代表參

第17頁共41頁更多資料加微信:.

與民主測評,且民主測評的結果無棄權票.某作品的評比數(shù)據(jù)統(tǒng)計如下:

專業(yè)評委給分(單位:分)

①88

②87

③94

④91

⑤90

(專業(yè)評委給分統(tǒng)計表)

記“專業(yè)評委給分”的平均數(shù)為.

(1)求該作品在民主測評中得到?“不贊成”的票數(shù);

(2)對于該作品,問的值是多少?

(3)記“民主測評得分?”為,“綜合得分”為S,若規(guī)定:

①“贊成”的票數(shù)×3分?+“不贊成”的票數(shù)×(﹣1)分;

②S?==0.70.3.

求該作品的?+“綜?合得分”S的值.

思路引領:(1)“不贊成”的票數(shù)=總票數(shù)﹣贊成的票;

(2)平均數(shù)=總分數(shù)÷總人數(shù);

(3)根據(jù)“贊成”的票數(shù)×3分+“不贊成”的票數(shù)×(﹣1)分;S=0.70.3求出該作品的“綜

合得分”S?的=值.?+?

解:(1)該作品在民主測評中得到“不贊成”的票數(shù):50﹣40=10(張),

答:該作品在民主測評中得到“不贊成”的票是10張;

(2)(88+87+94+91+90)÷5=90(分);

答:?的=值是90分;

?

第18頁共41頁更多資料加微信:.

(3)①40×3+10×(﹣1)=110(分);

②∵S=0?.7=0.3

=0.7×90+0?.3+×11?0

=96(分).

答:該作品的“綜合得分”S的值為96分.

總結提升:本題考查了加權平均數(shù)、算術平均數(shù),掌握這兩種平均數(shù)的應用,其中讀懂題意是解題關鍵.

18.(2022?杭州)某校學生會要在甲、乙兩位候選人中選擇一人擔任文藝部干事,對他們進行了文化水平、

藝術水平、組織能力的測試,根據(jù)綜合成績擇優(yōu)錄取,他們的各項成績(單項滿分100分)如下表所示:

候選人文化水平藝術水平組織能力

甲80分87分82分

乙80分96分76分

(1)如果把各項成績的平均數(shù)作為綜合成績,應該錄取誰?

(2)如果想錄取一名組織能力較強的候選人,把文化水平、藝術水平、組織能力三項成績分別按照20%,

20%,60%的比例計入綜合成績,應該錄取誰?

思路引領:(1)根據(jù)算術平均數(shù)的定義列式計算可得;

(2)根據(jù)加權平均數(shù)的定義列式計算可得.

解:(1)甲的平均成績?yōu)?3(分);

80+87+82

=

乙的平均成績?yōu)?34(分),

80+96+76

=

因為乙的平均成績高于3甲的平均成績,

所以乙被錄用;

(2)根據(jù)題意,甲的平均成績?yōu)?0×20%+87×20%+82×60%=82.6(分),

乙的平均成績?yōu)?0×20%+96×20%+76×60%=80.8(分),

因為甲的平均成績高于乙的平均成績,

所以甲被錄用.

總結提升:本題主要考查平均數(shù),解題的關鍵是熟練掌握算術平均數(shù)和加權平均數(shù)的計算公式.

19.(2022?重慶)公司生產(chǎn)A、B兩種型號的掃地機器人,為了解它們的掃地質量,工作人員從某月生產(chǎn)的

A、B型掃地機器人中各隨機抽取10臺,在完全相同條件下試驗,記錄下它們的除塵量的數(shù)據(jù)(單位:g),

第19頁共41頁更多資料加微信:.

并進行整理、描述和分析(除塵量用x表示,共分為三個等級:合格80≤x<85,良好85≤x<95,優(yōu)秀

x≥95),下面給出了部分信息:

10臺A型掃地機器人的除塵量:83,84,84,88,89,89,95,95,95,98.

10臺B型掃地機器人中“良好”等級包含的所有數(shù)據(jù)為:85,90,90,90,94

抽取的A、B型掃地機器人除塵量統(tǒng)計表

型號平均數(shù)中位數(shù)眾數(shù)方差“優(yōu)秀”等級所占

百分比

A9089a26.640%

B90b903030%

根據(jù)以上信息,解答下列問題:

(1)填空:a=95,b=90,m=20;

(2)這個月公司可生產(chǎn)B型掃地機器人共3000臺,估計該月B型掃地機器人“優(yōu)秀”等級的臺數(shù);

(3)根據(jù)以上數(shù)據(jù),你認為該公司生產(chǎn)的哪種型號的掃地機器人掃地質量更好?請說明理由(寫出一條

理由即可).

思路引領:(1)根據(jù)眾數(shù)、中位數(shù)概念可求出a、b的值,由B型掃地機器人中“良好”等級占50%,“優(yōu)

秀”等級所占百分比為30%,可求出m的值;

(2)用3000乘30%即可得答案;

(3)比較A型、B型掃地機器人的除塵量平均數(shù)、眾數(shù)可得答案.

解:(1)在83,84,84,88,89,89,95,95,95,98中,出現(xiàn)次數(shù)最多的是95,

∴眾數(shù)a=95,

10臺B型掃地機器人中“良好”等級有5臺,占50%,“優(yōu)秀”等級所占百分比為30%,

∴“合格”等級占1﹣50%﹣30%=20%,即m=20,

把B型掃地機器人的除塵量從小到大排列后,第5個和第6個數(shù)都是90,

第20頁共41頁更多資料加微信:.

∴b=90,

故答案為:95,90,20;

(2)估計該月B型掃地機器人“優(yōu)秀”等級的臺數(shù)3000×30%=900(臺);

(3)A型號的掃地機器人掃地質量更好,理由是在平均除塵量都是90的情況下,A型號的掃地機器人

除塵量的眾數(shù)>B型號的掃地機器人除塵量的眾數(shù)(理由不唯一).

總結提升:本題考查數(shù)據(jù)的整理,涉及眾數(shù)、中位數(shù)、平均數(shù)、方差等,解題的關鍵是掌握數(shù)據(jù)收集與

整理的相關概念.

20.(2022?徐州)如圖,下列裝在相同的透明密封盒內(nèi)的古錢幣,其密封盒上分別標有古錢幣的尺寸及質

量,例如:錢幣“文星高照”密封盒上所標“45.4*2.8mm,24.4g”是指該枚古錢幣的直徑為45.4mm,

厚度為2.8mm,質量為24.4g.已知這些古錢幣的材質相同.

根據(jù)圖中信息,解決下列問題.

(1)這5枚古錢幣,所標直徑的平均數(shù)是45.74mm,所標厚度的眾數(shù)是2.3mm,所標質量的

中位數(shù)是21.7g;

(2)由于古錢幣無法從密封盒內(nèi)取出,為判斷密封盒上所標古錢幣的質量是否有錯,桐桐用電子秤測得

每枚古錢幣與其密封盒的總質量如下:

名稱文星高照狀元及第鹿鶴同春順風大吉連中三元

總質量/g58.758.155.254.355.8

盒標質量24.424.013.020.021.7

盒子質量34.334.142.234.334.1

請你應用所學的統(tǒng)計知識,判斷哪枚古錢幣所標的質量與實際質量差異較大,并計算該枚古錢幣的實際

質量約為多少克.

思路引領:(1)利用平均數(shù)的計算公式計算平均數(shù);

(2)“鹿鶴同春”密封盒的質量異常,故“鹿鶴同春”的質量與實際質量差異較大,先其余四個盒子的

質量的平均數(shù),進而得出“鹿鶴同春”的實際質量.

第21頁共41頁更多資料加微信:.

解:(1)這5枚古錢幣,所標直徑的平均數(shù)是:(45.4+48.1+45.1+44.6+45.5)=45.74(mm),

1

×

這5枚古幣的厚度分別為:2.8mm,2.4mm,2.3m5m,2.1mm,2.3mm,

其中2.3mm出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,

∴這5枚古錢幣的厚度的眾數(shù)為2.3mm,

將這5枚古錢幣的質量從小到大的順序排列為:13.0g,20.0g,21.7g,24.0g,24.4g,

∴這5枚古錢幣的質量的中位數(shù)為21.7g;

故答案為:45.74;2.3;21.7;

(2)“鹿鶴同春”密封盒的質量異常,故“鹿鶴同春”的質量與實際質量差異較大,

其余四個盒子的質量的平均數(shù)為:34.2(g),

34.3+34.1+34.3+34.1

=

55.2﹣34.2=21.0(g),4

答:“鹿鶴同春”的實際質量約為21.0克.

總結提升:本題考查了平均數(shù)、眾數(shù)、中位數(shù)的意義和計算方法,掌握相關定義是解答本題的關鍵.

21.(2023?松江區(qū)二模)某校對六年級學生進行了一次安全知識測試,按成績x分(x為整數(shù))評定為A、

B、C、D四個等級.其中A等級:90≤x≤100,B等級:80≤x<90,C等級:60≤x≤80,D等級:0

≤x<60.從中隨機抽取了一部分學生的成績進行分析,繪制成如下的統(tǒng)計圖表(部分信息缺失).

請根據(jù)所給信息,回答下列問題:

等級頻數(shù)(人數(shù))頻率

A15

B3040%

Ca

Db

(1)扇形圖中,B等級所在扇形的圓心角為144°;

(2)此次測試成績的中位數(shù)處在等級B中;(填A、B、C.D)

(3)該校決定對D等級的學生進行安全再教育,已知a是b的5倍,那么該校六年級300名學生中,

需接受安全再教育的約有多少人?

第22頁共41頁更多資料加微信:.

思路引領:(1)用360°乘B等級的頻率40%可得B等級所在扇形的圓心角度數(shù);

(2)用B等級的頻數(shù)除以B等級的頻率可得樣本容量,再根據(jù)中位數(shù)的定義解答即可;

(3)根據(jù)樣本容量以及a是b的5倍,可得a、b的值,再用D的頻率乘總人數(shù)300名即可.

解:(1)扇形圖中,B等級所在扇形的圓心角為360°×40%=144°,

故答案為:144;

(2)本次調(diào)查的樣本容量為:30÷40%=75,

把樣本中的75個學生的成績進從小到大排列,排在第38個數(shù)在等級B中,故此次測試成績的中位數(shù)處

在等級B中.

故答案為:B;

(3)由題意可知,a+b=75﹣15﹣30=30,

∵a是b的5倍,

∴5b+b=30,

解得b=5,

30020(名),

5

答:×需75接=受安全再教育的約有20人.

總結提升:本題考查用樣本估計總體、扇形統(tǒng)計圖、中位數(shù)以及頻數(shù)分布表,解答本題的關鍵是明確題

意,利用數(shù)形結合的思想解答.

22.(2023?海淀區(qū)一模)某小組對當?shù)?022年3月至10月西紅柿與黃瓜市場價格進行調(diào)研,經(jīng)過整理、

描述和分析得到了部分信息.

a.西紅柿與黃瓜市場價格的折線圖:

第23頁共41頁更多資料加微信:.

b.西紅柿與黃瓜價格的眾數(shù)和中位數(shù):

蔬菜價格眾數(shù)中位數(shù)

西紅柿(元/千克)6m

黃瓜(元/千克)n6

根據(jù)以上信息,回答下列問題:

(1)m=6.5,n=6;

(2)在西紅柿與黃瓜中,西紅柿的價格相對更穩(wěn)定;

(3)如果這兩種蔬菜的價格隨產(chǎn)量的增大而降低,結合題中信息推測這兩種蔬菜在6月的產(chǎn)量相對

更高.

思路引領:(1)分別根據(jù)中位數(shù)和眾數(shù)的定義可得m、n的值;

(2)根據(jù)方差的意義解答即可;

(3)根據(jù)統(tǒng)計圖解答即可.

解:(1)把西紅柿在當?shù)?022年3月至10月的價格從小到大排列,排在中間的兩個數(shù)分別是6和7,

故中位數(shù)m6.5;

6+7

黃瓜在當?shù)?20222年=3月至10月的價格中,6元/千克出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,故眾數(shù)n=6;

故答案為:6.5;6;

(2)由折線統(tǒng)計圖可知,西紅柿的價格在5元/千克至10元/千克徘徊,黃瓜的價格在3元/千克至10元

/千克徘徊,所以在西紅柿與黃瓜中,西紅柿的價格相對更穩(wěn)定.

故答案為:西紅柿;

(3)由統(tǒng)計圖可知,6月份兩種蔬菜的價格最低,所以如果這兩種蔬菜的價格隨產(chǎn)量的增大而降低,結

合題中信息推測這兩種蔬菜在6月的產(chǎn)量相對更高.

第24頁共41頁更多資料加微信:.

故答案為:6.

總結提升:本題考查了折線統(tǒng)計圖、中位數(shù)、眾數(shù)和方差,掌握相關統(tǒng)計量的意義是解決問題的關鍵.

23.(2023?徐州模擬)某校為了解九年級學生身體健康情況,從全校九年級學生中隨機抽取部分學生進行

調(diào)查,調(diào)查結果分為四類:A類;B類;C類;D類.現(xiàn)將調(diào)查結果繪制成如圖不完整的統(tǒng)計圖,請根據(jù)

統(tǒng)計圖中的信息解答下列問題:

(1)本次共調(diào)查了50名學生;

(2)補全條形統(tǒng)計圖;

(3)根據(jù)抽樣調(diào)查結果,請你估計該校九年級1000名學生中身體健康情況為A類的人數(shù).

思路引領:(1)根據(jù)B類的人數(shù)和所占的百分比求出抽查的總人數(shù);

(2)用總人數(shù)減去其他類別的人數(shù),求出C類的人數(shù),從而補全統(tǒng)計圖;

(3)用總人數(shù)乘以樣本中身體健康的人數(shù)所占的百分比即可.

解:(1)這次共抽取的學生有:20÷40%=50(名),

故答案為:50;

(2)C類的人數(shù)有:50﹣15﹣20﹣5=10(名),補全統(tǒng)計圖如下:

(3)1000300(名),

15

答:估計該×校50九=年級1000名學生中身體健康情況為A類的人數(shù)約300名.

總結提升:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必

要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占

第25頁共41頁更多資料加微信:.

總體的百分比大小.

24.(2023?雁塔區(qū)校級模擬)為了解落實《陜西省大中小學勞動教育實踐基地建設指導意見》的實施情況,

某中學從全體學生中隨機抽取部分學生,調(diào)查他們平均每周勞動時間t(單位:h),按勞動時間分為五組:

A組“t<3”,B組“3≤t<5”,C組“5≤t<7”,D組“7≤t<9”,E組“t≥9”,將收集的數(shù)據(jù)整理后,

繪制成如圖兩幅不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)這次抽樣調(diào)查的樣本容量是100,B組所在扇形的圓心角的大小是108°,將條形統(tǒng)計圖

補充完整;

(2)這次抽樣調(diào)查中平均每周勞動時間的中位數(shù)落在B組;

(3)該校共有2000名學生,請你估計該校學生平均每周勞動時間不少于7h的學生人數(shù).

思路引領:(1)結合條形統(tǒng)計圖和扇形統(tǒng)計圖,用D組的人數(shù)除以其所占的百分比可得這次抽樣調(diào)查的

樣本容量;用360°乘以B組所占的百分比,即可求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論