版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省揚(yáng)州市安宜高中、汜水高中聯(lián)考2025屆高三(最后沖刺)數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件2.在平行四邊形中,若則()A. B. C. D.3.已知函數(shù),其中表示不超過(guò)的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)4.已知雙曲線的左、右焦點(diǎn)分別為,圓與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若.則該雙曲線的離心率為A.2 B.3 C. D.5.已知函數(shù),且關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍().A. B. C. D.6.如圖在直角坐標(biāo)系中,過(guò)原點(diǎn)作曲線的切線,切點(diǎn)為,過(guò)點(diǎn)分別作、軸的垂線,垂足分別為、,在矩形中隨機(jī)選取一點(diǎn),則它在陰影部分的概率為()A. B. C. D.7.方程在區(qū)間內(nèi)的所有解之和等于()A.4 B.6 C.8 D.108.設(shè)P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q9.已知,則,不可能滿(mǎn)足的關(guān)系是()A. B. C. D.10.設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)11.某工廠一年中各月份的收入、支出情況的統(tǒng)計(jì)如圖所示,下列說(shuō)法中錯(cuò)誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個(gè)月的平均收入為萬(wàn)元12.已知冪函數(shù)的圖象過(guò)點(diǎn),且,,,則,,的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記Sk=1k+2k+3k+……+nk,當(dāng)k=1,2,3,……時(shí),觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測(cè),A﹣B=_____.14.如圖,在長(zhǎng)方體中,,E,F(xiàn),G分別為的中點(diǎn),點(diǎn)P在平面ABCD內(nèi),若直線平面EFG,則線段長(zhǎng)度的最小值是________________.15.在平面直角坐標(biāo)系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為_(kāi)_______.16.已知橢圓與雙曲線(,)有相同的焦點(diǎn),其左、右焦點(diǎn)分別為、,若橢圓與雙曲線在第一象限內(nèi)的交點(diǎn)為,且,則雙曲線的離心率為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.18.(12分)[選修4-5:不等式選講]:已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)設(shè),,且的最小值為.若,求的最小值.19.(12分)已知變換將平面上的點(diǎn),分別變換為點(diǎn),.設(shè)變換對(duì)應(yīng)的矩陣為.(1)求矩陣;(2)求矩陣的特征值.20.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項(xiàng)和;(2)若,求數(shù)列的前n項(xiàng)和為.21.(12分)已知橢圓的左焦點(diǎn)為F,上頂點(diǎn)為A,直線AF與直線垂直,垂足為B,且點(diǎn)A是線段BF的中點(diǎn).(I)求橢圓C的方程;(II)若M,N分別為橢圓C的左,右頂點(diǎn),P是橢圓C上位于第一象限的一點(diǎn),直線MP與直線交于點(diǎn)Q,且,求點(diǎn)P的坐標(biāo).22.(10分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
首先利用二倍角正切公式由,求出,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:∵,∴可解得或,∴“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,二倍角正切公式的應(yīng)用是解決本題的關(guān)鍵,屬于基礎(chǔ)題.2、C【解析】
由,,利用平面向量的數(shù)量積運(yùn)算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,
平行四邊形中,,
,,,
因?yàn)?
所以
,
,所以,故選C.【點(diǎn)睛】本題主要考查向量的幾何運(yùn)算以及平面向量數(shù)量積的運(yùn)算法則,屬于中檔題.向量的運(yùn)算有兩種方法:(1)平行四邊形法則(平行四邊形的對(duì)角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).3、C【解析】
根據(jù)表示不超過(guò)的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進(jìn)而下結(jié)論.【詳解】由表示不超過(guò)的最大正整數(shù),其函數(shù)圖象為選項(xiàng)A,函數(shù),故錯(cuò)誤;選項(xiàng)B,函數(shù)為非奇非偶函數(shù),故錯(cuò)誤;選項(xiàng)C,函數(shù)是以1為周期的周期函數(shù),故正確;選項(xiàng)D,函數(shù)在區(qū)間上是增函數(shù),但在整個(gè)定義域范圍上不具備單調(diào)性,故錯(cuò)誤.故選:C【點(diǎn)睛】本題考查對(duì)題干的理解,屬于函數(shù)新定義問(wèn)題,可作出圖象分析性質(zhì),屬于較難題.4、D【解析】
本題首先可以通過(guò)題意畫(huà)出圖像并過(guò)點(diǎn)作垂線交于點(diǎn),然后通過(guò)圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長(zhǎng)度,的長(zhǎng)度即點(diǎn)縱坐標(biāo),然后將點(diǎn)縱坐標(biāo)帶入圓的方程即可得出點(diǎn)坐標(biāo),最后將點(diǎn)坐標(biāo)帶入雙曲線方程即可得出結(jié)果。【詳解】根據(jù)題意可畫(huà)出以上圖像,過(guò)點(diǎn)作垂線并交于點(diǎn),因?yàn)?,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因?yàn)閳A的半徑為,是圓的半徑,所以,因?yàn)?,,,,所以,三角形是直角三角形,因?yàn)?,所以,,即點(diǎn)縱坐標(biāo)為,將點(diǎn)縱坐標(biāo)帶入圓的方程中可得,解得,,將點(diǎn)坐標(biāo)帶入雙曲線中可得,化簡(jiǎn)得,,,,故選D?!军c(diǎn)睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。5、B【解析】
根據(jù)條件可知方程有且只有一個(gè)實(shí)根等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象,數(shù)形結(jié)合即可.【詳解】解:因?yàn)闂l件等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象如圖,由圖可知,,故選:B.【點(diǎn)睛】本題主要考查函數(shù)圖象與方程零點(diǎn)之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.6、A【解析】
設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進(jìn)而求得切點(diǎn)的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點(diǎn),所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點(diǎn)睛】本題考查定積分的計(jì)算以及幾何概型,同時(shí)也涉及了二次函數(shù)的切線方程的求解,考查計(jì)算能力,屬于中等題.7、C【解析】
畫(huà)出函數(shù)和的圖像,和均關(guān)于點(diǎn)中心對(duì)稱(chēng),計(jì)算得到答案.【詳解】,驗(yàn)證知不成立,故,畫(huà)出函數(shù)和的圖像,易知:和均關(guān)于點(diǎn)中心對(duì)稱(chēng),圖像共有8個(gè)交點(diǎn),故所有解之和等于.故選:.【點(diǎn)睛】本題考查了方程解的問(wèn)題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力,確定函數(shù)關(guān)于點(diǎn)中心對(duì)稱(chēng)是解題的關(guān)鍵.8、C【解析】
解:因?yàn)镻={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C9、C【解析】
根據(jù)即可得出,,根據(jù),,即可判斷出結(jié)果.【詳解】∵;∴,;∴,,故正確;,故C錯(cuò)誤;∵,故D正確故C.【點(diǎn)睛】本題主要考查指數(shù)式和對(duì)數(shù)式的互化,對(duì)數(shù)的運(yùn)算,以及基本不等式:和不等式的應(yīng)用,屬于中檔題10、C【解析】
根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯(cuò)誤,為偶函數(shù),故錯(cuò)誤,是奇函數(shù),故正確.為偶函數(shù),故錯(cuò)誤,故選:.【點(diǎn)睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.11、D【解析】由圖可知,收入最高值為萬(wàn)元,收入最低值為萬(wàn)元,其比是,故項(xiàng)正確;結(jié)余最高為月份,為,故項(xiàng)正確;至月份的收入的變化率為至月份的收入的變化率相同,故項(xiàng)正確;前個(gè)月的平均收入為萬(wàn)元,故項(xiàng)錯(cuò)誤.綜上,故選.12、A【解析】
根據(jù)題意求得參數(shù),根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),以及對(duì)數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
觀察知各等式右邊各項(xiàng)的系數(shù)和為1,最高次項(xiàng)的系數(shù)為該項(xiàng)次數(shù)的倒數(shù),據(jù)此計(jì)算得到答案.【詳解】根據(jù)所給的已知等式得到:各等式右邊各項(xiàng)的系數(shù)和為1,最高次項(xiàng)的系數(shù)為該項(xiàng)次數(shù)的倒數(shù),∴A,A1,解得B,所以A﹣B.故答案為:.【點(diǎn)睛】本題考查了歸納推理,意在考查學(xué)生的推理能力.14、【解析】
如圖,連接,證明平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.當(dāng)時(shí).線段的長(zhǎng)度最小,再求此時(shí)的得解.【詳解】如圖,連接,因?yàn)镋,F(xiàn),G分別為AB,BC,的中點(diǎn),所以,平面,則平面.因?yàn)椋酝淼闷矫?,?所以平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.在中,,故當(dāng)時(shí).線段的長(zhǎng)度最小,最小值為.故答案為:【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,考查立體幾何中的軌跡問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.15、【解析】
利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點(diǎn)睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關(guān)系,考查了運(yùn)算能力,屬于基礎(chǔ)題.16、【解析】
先根據(jù)橢圓得出焦距,結(jié)合橢圓的定義求出,結(jié)合雙曲線的定義求出雙曲線的實(shí)半軸,最后利用離心率的公式求出離心率即可.【詳解】解:因?yàn)闄E圓,則焦點(diǎn)為,又因?yàn)闄E圓與雙曲線(,)有相同的焦點(diǎn),橢圓與雙曲線在第一象限內(nèi)的交點(diǎn)為,且,在橢圓中:由橢圓的定義:在雙曲線中:,所以雙曲線的實(shí)軸長(zhǎng)為:,實(shí)半軸為則雙曲線的離心率為:.故答案為:【點(diǎn)睛】本題主要考查橢圓與雙曲線的定義,考查離心率的求解,利用定義解決綜合問(wèn)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】試題分析:(1)根據(jù)已知條件由線線垂直得出線面垂直,再根據(jù)面面垂直的判定定理證得成立;(2)通過(guò)已知條件求出各邊長(zhǎng)度,建系如圖所示,求出平面的法向量,根據(jù)線面角公式代入坐標(biāo)求得結(jié)果.試題解析:(1)證明:取的中點(diǎn),連接,則,又,所以,則四邊形為平行四邊形,所以,又平面,∴平面,∴.由即及為的中點(diǎn),可得為等邊三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴為直線與所成的角,由(1)可得,∴,∴,設(shè),則,取的中點(diǎn),連接,過(guò)作的平行線,可建立如圖所示的空間直角坐標(biāo)系,則,∴,所以,設(shè)為平面的法向量,則,即,取,則為平面的一個(gè)法向量,∵,則直線與平面所成角的正弦值為.點(diǎn)睛:判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條直線也垂直于這個(gè)平面.平面與平面垂直的判定方法:①定義法.②利用判定定理:一個(gè)平面過(guò)另一個(gè)平面的一條垂線,則這兩個(gè)平面垂直.18、(1)(2)【解析】
(1)當(dāng)時(shí),,原不等式可化為,分類(lèi)討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值.【詳解】(1)當(dāng)時(shí),,原不等式可化為,①當(dāng)時(shí),不等式①可化為,解得,此時(shí);當(dāng)時(shí),不等式①可化為,解得,此時(shí);當(dāng)時(shí),不等式①可化為,解得,此時(shí),綜上,原不等式的解集為.(2)由題意得,,因?yàn)榈淖钚≈禐椋?,由,得,所以,?dāng)且僅當(dāng),即,時(shí),的最小值為.【點(diǎn)睛】本題主要考查了絕對(duì)值不等式問(wèn)題,對(duì)于含絕對(duì)值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對(duì)值的幾何意義求解.法一是運(yùn)用分類(lèi)討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對(duì)值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動(dòng)向.19、(1)(2)1或6【解析】
(1)設(shè),根據(jù)變換可得關(guān)于的方程,解方程即可得到答案;(2)求出特征多項(xiàng)式,再解方程,即可得答案;【詳解】(1)設(shè),則,,即,解得,則.(2)設(shè)矩陣的特征多項(xiàng)式為,可得,令,可得或.【點(diǎn)睛】本題考查矩陣的求解、矩陣的特征值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力.20、(1)(2)【解析】
(1)利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)求出公差,從而求出,再利用等比數(shù)列的前項(xiàng)和公式即可求解.(2)由(1)求出,再利用裂項(xiàng)求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點(diǎn)睛】本題考查了等差數(shù)列、等比數(shù)列的通項(xiàng)公式、等比數(shù)列的前項(xiàng)和公式、裂項(xiàng)求和法,需熟記公式,屬于基礎(chǔ)題.21、(I).(II)【解析】
(I)寫(xiě)出坐標(biāo),利用直線與直線垂直,得到.求出點(diǎn)的坐標(biāo)代入,可得到的一個(gè)關(guān)系式,由此求得和的值,進(jìn)而求得橢圓方程.(II)設(shè)出點(diǎn)的坐標(biāo),由此寫(xiě)出直線的方程,從而求得點(diǎn)的坐標(biāo),代入,化簡(jiǎn)可求得點(diǎn)的坐標(biāo).【詳解】(I)∵橢圓的左焦點(diǎn),上頂點(diǎn),直線AF與直線垂直∴直線AF的斜率,即①又點(diǎn)A是線段BF的中點(diǎn)∴點(diǎn)的坐標(biāo)為又點(diǎn)在直線上∴②∴由①②得:∴∴橢圓的方程為.(II)設(shè)由(I)易得頂點(diǎn)M、N的坐標(biāo)為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44973-2024冰上運(yùn)動(dòng)賽事活動(dòng)要求及評(píng)估規(guī)范
- 2024年度高空作業(yè)吊裝作業(yè)安全協(xié)議3篇
- 2024年度奧運(yùn)會(huì)游泳運(yùn)動(dòng)員參賽合同協(xié)議3篇
- 2024年度車(chē)輛私人抵押貸款合同范本下載3篇
- 2024年度煙酒電商渠道總代理合作協(xié)議2篇
- 2024年度消防設(shè)備銷(xiāo)售與技術(shù)培訓(xùn)服務(wù)合同3篇
- 2024與會(huì)計(jì)事務(wù)所簽訂財(cái)務(wù)報(bào)表制作保密協(xié)議3篇
- 2024年信用證業(yè)務(wù)結(jié)算流程優(yōu)化合同范本3篇
- 2024年托盤(pán)研發(fā)與綠色制造技術(shù)轉(zhuǎn)移合同3篇
- 2024中建勞務(wù)分包補(bǔ)充協(xié)議范本:材料設(shè)備采購(gòu)與管理規(guī)范3篇
- 成人經(jīng)鼻高流量濕化氧療臨床規(guī)范應(yīng)用專(zhuān)家共識(shí)解讀
- 陜西測(cè)繪地理信息局所屬事業(yè)單位2025年上半年招聘87人和重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 《外傷性顱內(nèi)積氣》課件
- 北京市海淀區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期語(yǔ)文期末試卷
- 南京審計(jì)大學(xué)《中級(jí)財(cái)務(wù)會(huì)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 陜西省咸陽(yáng)市2023-2024學(xué)年高一上學(xué)期期末考試 物理 含解析
- 程序員個(gè)人年終總結(jié)
- (正式版)HG∕T 21633-2024 玻璃鋼管和管件選用規(guī)定
- 蔚來(lái)用戶(hù)運(yùn)營(yíng)分析報(bào)告-數(shù)字化
- 南京市2023-2024高一上學(xué)期期末英語(yǔ)試卷及答案
- (完整版)機(jī)加中心績(jī)效考核方案
評(píng)論
0/150
提交評(píng)論