版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆江西省南昌市進(jìn)賢一中高考仿真卷數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知一個(gè)三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.2.正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則()A. B.1 C. D.23.已知函數(shù),當(dāng)時(shí),的取值范圍為,則實(shí)數(shù)m的取值范圍是()A. B. C. D.4.如圖,正四面體的體積為,底面積為,是高的中點(diǎn),過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,5.1777年,法國科學(xué)家蒲豐在宴請客人時(shí),在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個(gè)客人發(fā)許多等質(zhì)量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對針落地的位置進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計(jì)數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.6.已知為虛數(shù)單位,若復(fù)數(shù),,則A. B.C. D.7.若,則實(shí)數(shù)的大小關(guān)系為()A. B. C. D.8.,則與位置關(guān)系是()A.平行 B.異面C.相交 D.平行或異面或相交9.設(shè),,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件10.已知數(shù)列滿足,則()A. B. C. D.11.設(shè)集合,集合,則=()A. B. C. D.R12.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點(diǎn),則的最大值是()A. B.1 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在處的切線與直線平行,則為________.14.如圖是九位評委打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均分為_______.15.已知實(shí)數(shù),滿足約束條件,則的最大值是__________.16.如圖,直線平面,垂足為,三棱錐的底面邊長和側(cè)棱長都為4,在平面內(nèi),是直線上的動(dòng)點(diǎn),則點(diǎn)到平面的距離為_______,點(diǎn)到直線的距離的最大值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足:對一切成立.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.18.(12分)已知數(shù)列和滿足,,,,.(Ⅰ)求與;(Ⅱ)記數(shù)列的前項(xiàng)和為,且,若對,恒成立,求正整數(shù)的值.19.(12分)從拋物線C:()外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)在拋物線C上,且(F為拋物線的焦點(diǎn)).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請說明理由.20.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,判斷直線為參數(shù))與圓的位置關(guān)系.21.(12分)已知矩陣不存在逆矩陣,且非零特低值對應(yīng)的一個(gè)特征向量,求的值.22.(10分)已知函數(shù),.(1)若函數(shù)在上單調(diào)遞減,且函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)求證:(,且).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)三視圖得到幾何體為一三棱錐,并以該三棱錐構(gòu)造長方體,于是得到三棱錐的外接球即為長方體的外接球,進(jìn)而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個(gè)頂點(diǎn)位于長方體的四個(gè)頂點(diǎn),即為三棱錐,且長方體的長、寬、高分別為,∴此三棱錐的外接球即為長方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當(dāng)且僅當(dāng),時(shí),三棱錐外接球的表面積取得最小值為.故選B.【點(diǎn)睛】(1)解決關(guān)于外接球的問題的關(guān)鍵是抓住外接的特點(diǎn),即球心到多面體的頂點(diǎn)的距離都等于球的半徑,同時(shí)要作一圓面起襯托作用.(2)長方體的外接球的直徑即為長方體的體對角線,對于一些比較特殊的三棱錐,在研究其外接球的問題時(shí)可考慮通過構(gòu)造長方體,通過長方體的外球球來研究三棱錐的外接球的問題.2、B【解析】
根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個(gè)根∴又是正項(xiàng)等比數(shù)列,所以∴.故選:B【點(diǎn)睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.3、C【解析】
求導(dǎo)分析函數(shù)在時(shí)的單調(diào)性、極值,可得時(shí),滿足題意,再在時(shí),求解的x的范圍,綜合可得結(jié)果.【詳解】當(dāng)時(shí),,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時(shí),的取值范圍為,∴又當(dāng)時(shí),令,則,即,∴綜上所述,的取值范圍為.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.4、A【解析】
設(shè),取與重合時(shí)的情況,計(jì)算出以及的值,利用排除法可得出正確選項(xiàng).【詳解】如圖所示,利用排除法,取與重合時(shí)的情況.不妨設(shè),延長到,使得.,,,,則,由余弦定理得,,,又,,當(dāng)平面平面時(shí),,,排除B、D選項(xiàng);因?yàn)?,,此時(shí),,當(dāng)平面平面時(shí),,,排除C選項(xiàng).故選:A.【點(diǎn)睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計(jì)算公式、排除法,考查了空間想象能力、推理能力與計(jì)算能力,屬于難題.5、D【解析】
根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出頻率,用以估計(jì)概率.【詳解】.故選:D.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計(jì)概率,屬于基礎(chǔ)題.6、B【解析】
由可得,所以,故選B.7、A【解析】
將化成以為底的對數(shù),即可判斷的大小關(guān)系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對數(shù)函數(shù)的性質(zhì)可得.又因?yàn)?,?故選:A.【點(diǎn)睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對數(shù)函數(shù)的性質(zhì),考查了對數(shù)的運(yùn)算性質(zhì).兩個(gè)對數(shù)型的數(shù)字比較大小時(shí),底數(shù)相同,則構(gòu)造對數(shù)函數(shù),結(jié)合對數(shù)的單調(diào)性可判斷大??;若真數(shù)相同,則結(jié)合對數(shù)函數(shù)的圖像或者換底公式可判斷大小;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.8、D【解析】結(jié)合圖(1),(2),(3)所示的情況,可得a與b的關(guān)系分別是平行、異面或相交.選D.9、A【解析】
根據(jù)對數(shù)的運(yùn)算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點(diǎn)睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.10、C【解析】
利用的前項(xiàng)和求出數(shù)列的通項(xiàng)公式,可計(jì)算出,然后利用裂項(xiàng)法可求出的值.【詳解】.當(dāng)時(shí),;當(dāng)時(shí),由,可得,兩式相減,可得,故,因?yàn)橐策m合上式,所以.依題意,,故.故選:C.【點(diǎn)睛】本題考查利用求,同時(shí)也考查了裂項(xiàng)求和法,考查計(jì)算能力,屬于中等題.11、D【解析】試題分析:由題,,,選D考點(diǎn):集合的運(yùn)算12、D【解析】
如圖所示建立直角坐標(biāo)系,設(shè),則,計(jì)算得到答案.【詳解】如圖所示建立直角坐標(biāo)系,則,,,設(shè),則.當(dāng),即時(shí)等號成立.故選:.【點(diǎn)睛】本題考查了向量的計(jì)算,建立直角坐標(biāo)系利用坐標(biāo)計(jì)算是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意得出,由此可得出實(shí)數(shù)的值.【詳解】,,直線的斜率為,由于函數(shù)在處的切線與直線平行,則.故答案為:.【點(diǎn)睛】本題考查利用函數(shù)的切線與直線平行求參數(shù),解題時(shí)要結(jié)合兩直線的位置關(guān)系得出兩直線斜率之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.14、1【解析】
寫出莖葉圖對應(yīng)的所有的數(shù),去掉最高分,最低分,再求平均分.【詳解】解:所有的數(shù)為:77,78,82,84,84,86,88,93,94,共9個(gè)數(shù),去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個(gè)數(shù),平均分為,故答案為1.【點(diǎn)睛】本題考查莖葉圖及平均數(shù)的計(jì)算,屬于基礎(chǔ)題.15、【解析】
令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當(dāng)直線經(jīng)過時(shí),最大,且,故的最大值為.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃中非線性目標(biāo)函數(shù)的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎(chǔ)題.16、【解析】
三棱錐的底面邊長和側(cè)棱長都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點(diǎn)到平面的距離;,可得點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過和的兩個(gè)平行平面間距離加半徑,即可求出結(jié)論.【詳解】邊長為,則中線長為,點(diǎn)到平面的距離為,點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過和的兩個(gè)平行平面間距離加半徑.又三棱錐的底面邊長和側(cè)棱長都為4,以下求過和的兩個(gè)平行平面間距離,分別取中點(diǎn),連,則,同理,分別過做,直線確定平面,直線確定平面,則,同理,為所求,,,所以到直線最大距離為.故答案為:;.【點(diǎn)睛】本題考查空間中的距離、正四面體的結(jié)構(gòu)特征,考查空間想象能力,屬于較難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項(xiàng)求和法可得答案.【詳解】(1)①,當(dāng)時(shí),,,當(dāng)時(shí),②,①②得:,,適合,故;(2),.【點(diǎn)睛】本題考查法求數(shù)列的通項(xiàng)公式,考查裂項(xiàng)求和,是基礎(chǔ)題.18、(Ⅰ),;(Ⅱ)1【解析】
(Ⅰ)易得為等比數(shù)列,再利用前項(xiàng)和與通項(xiàng)的關(guān)系求解的通項(xiàng)公式即可.(Ⅱ)由題可知要求的最小值,再分析的正負(fù)即可得隨的增大而增大再判定可知即可.【詳解】(Ⅰ)因?yàn)?故是以為首項(xiàng),2為公比的等比數(shù)列,故.又當(dāng)時(shí),,解得.當(dāng)時(shí),…①…②①-②有,即.當(dāng)時(shí)也滿足.故為常數(shù)列,所以.即.故,(Ⅱ)因?yàn)閷?恒成立.故只需求的最小值即可.設(shè),則,又,又當(dāng)時(shí),時(shí).當(dāng)時(shí),因?yàn)?故.綜上可知.故隨著的增大而增大,故,故【點(diǎn)睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解通項(xiàng)公式的方法,同時(shí)也考查了根據(jù)數(shù)列的增減性判斷最值的問題,需要根據(jù)題意求解的通項(xiàng),并根據(jù)二項(xiàng)式定理分析其正負(fù),從而得到最小項(xiàng).屬于難題.19、(1);(2)①證明見解析;②能,.【解析】
(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)①設(shè),,寫出切線的方程,解方程組求出點(diǎn)的坐標(biāo).設(shè)點(diǎn),直線AB的方程,代入拋物線方程,利用韋達(dá)定理得到點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點(diǎn)Q的坐標(biāo).【詳解】(1)因?yàn)?,所以,即拋物線C的方程是.(2)①證明:由得,.設(shè),,則直線PA的方程為(?。瑒t直線PB的方程為(ⅱ),由(ⅰ)和(ⅱ)解得:,,所以.設(shè)點(diǎn),則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點(diǎn)坐標(biāo)為,即,又因?yàn)橹本€PQ的方程為,所以線段CD的中點(diǎn)在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當(dāng)點(diǎn)Q為,即為拋物線的焦點(diǎn)時(shí),四邊形是矩形.【點(diǎn)睛】本題考查拋物線的方程,考查直線和拋物線的位置關(guān)系,屬于難題.20、直線與圓C相切.【解析】
首先把直線和圓轉(zhuǎn)換為直角坐標(biāo)方程,進(jìn)一步利用點(diǎn)到直線的距離的應(yīng)用求出直線和圓的位置關(guān)系.【詳解】直線為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為.圓轉(zhuǎn)換為直角坐標(biāo)方程為,轉(zhuǎn)換為標(biāo)準(zhǔn)形式為,所以圓心到直線,的距離.直線與圓C相切.【點(diǎn)睛】本題考查的知識要點(diǎn):參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,直線與圓的位置關(guān)系式的應(yīng)用,點(diǎn)到直線的距離公式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.21、【解析】
由不存在逆矩陣,可得,再利用特征多項(xiàng)式求出特征值3,0,,利用矩陣乘法運(yùn)算即可.【詳解】因?yàn)椴淮嬖谀婢仃?,,所?矩陣的特征多項(xiàng)式為,令,則或,所以,即,所以,所以【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年校園擴(kuò)建工程沉降監(jiān)測與基礎(chǔ)施工質(zhì)量驗(yàn)收合同3篇
- 2024年度飯店食材供應(yīng)及廚房設(shè)備租賃合同
- 辦公環(huán)境下的兒童戶外活動(dòng)管理
- 2024年帶庭院別墅長期租賃合同范本3篇
- 利用網(wǎng)絡(luò)平臺推動(dòng)學(xué)校圖書館的建設(shè)與發(fā)展
- 以心理健康教育為導(dǎo)向的小學(xué)數(shù)學(xué)教學(xué)設(shè)計(jì)
- 商業(yè)學(xué)校操場運(yùn)動(dòng)場地裝飾設(shè)計(jì)與品牌形象塑造
- 醫(yī)療行業(yè)客戶服務(wù)標(biāo)準(zhǔn)與挑戰(zhàn)
- 2025中國鐵塔江西省分公司社會(huì)招聘51人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國移動(dòng)上海公司春季校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 對承租方有利的商鋪?zhàn)赓U合同
- 投標(biāo)突發(fā)事件應(yīng)急預(yù)案
- EPC項(xiàng)目土建設(shè)計(jì)的重難點(diǎn)分析及解決措施
- 醫(yī)院保安服務(wù)應(yīng)急預(yù)案
- 2024年廣東省揭陽市榕城區(qū)實(shí)驗(yàn)小學(xué)小升初銜接問卷數(shù)學(xué)試卷
- 江西警察學(xué)院治安學(xué)專業(yè)主干課程教學(xué)大綱 文檔
- 浙江大學(xué)2011–2012學(xué)年冬季學(xué)期《高級數(shù)據(jù)結(jié)構(gòu)與算法分析》課程期末考試試卷
- MOOC 信號與系統(tǒng)-西北工業(yè)大學(xué) 中國大學(xué)慕課答案
- 手術(shù)保護(hù)性約束
- 砌磚工程實(shí)訓(xùn)總結(jié)報(bào)告
- 低空經(jīng)濟(jì)研究報(bào)告-中國低空經(jīng)濟(jì)行業(yè)市場現(xiàn)狀調(diào)查及未來發(fā)展趨勢報(bào)告(2020-2023年)
評論
0/150
提交評論