版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高考數(shù)學(xué)數(shù)列專題知識(shí)訓(xùn)練150題含答案一、單選題1.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)的和,a1=﹣2016,S20072007?A.﹣2015 B.﹣2016 C.2015 D.20162.高斯是德國(guó)著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào).用他的名字定義的函數(shù)稱為高斯函數(shù)f(x)=[x],其中[x]表示不超過x的最大整數(shù).已知數(shù)列{an}滿足a1=2,a2=5,an+2+4A.249 B.499 C.749 D.9993.已知集合M={m|(m﹣11)(m﹣16)≤0,m∈N},若(x3﹣1x2)A.16 B.15 C.14 D.124.在等差數(shù)列an中,S3=3,SA.13 B.17 C.21 D.235.已知數(shù)列{an},它的前n項(xiàng)和為Sn,若點(diǎn)(n,SnnA.4n+1 B.2n+1 C.4n﹣1 D.2n﹣16.圖1是一個(gè)水平擺放的小正方體木塊,圖2,圖3是由這樣的小正方體木塊疊放而成的,按照這樣的規(guī)律放下去,第8個(gè)疊放的圖形中小正方體木塊的總數(shù)是()A.66 B.91 C.107 D.1207.若數(shù)列{an},{bn}的通項(xiàng)公式分別為anA.[?1,12) B.[?1,1) C.[?2,1)8.在等比數(shù)列{an}中,an+1<an,a2?a8=6,a4+a6=5,則a5A.32 B.65 C.239.已知等比數(shù)列{an}滿足a2+2a1=4,a32=a5,則該數(shù)列前20項(xiàng)的和為()A.210 B.210﹣1 C.220﹣1 D.22010.設(shè){an}是公比為正數(shù)的等比數(shù)列,a1=2,a3﹣4=a2,則a3=()A.2 B.﹣2 C.8 D.﹣811.在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=450,則數(shù)列{an}的前9項(xiàng)的和為()A.180 B.405 C.450 D.81012.已知等差數(shù)列{an}的首項(xiàng)a1=1A.5 B.7 C.9 D.1113.正奇數(shù)集合{1,3,5,…},現(xiàn)在由小到大按第n組有(2n-1)個(gè)奇數(shù)進(jìn)行分組:
{1},{3,5,7},{9,11,13,15,17},…
(第一組)(第二組)(第三組)。則2009位于第()組中.A.33 B.32 C.31 D.3014.F1,F(xiàn)2是x24+A.4 B.5 C.2 D.115.如果等差數(shù)列an中,a5+A.21 B.30 C.35 D.4016.在數(shù)列{an}A.a(chǎn)6<1 B.a(chǎn)7>1 C.17.已知等比數(shù)列{an}中,a1+a2=3,a3+a4=12,則a5+a6=().A.3 B.15 C.48 D.6318.用數(shù)學(xué)歸納法證明不等式1+1A.12k C.12k?1+119.如圖是瑞典數(shù)學(xué)家科赫在1904年構(gòu)造的能夠描述雪花形狀的圖案.圖形的作法是從一個(gè)正三角形開始,把每條邊分成三等分,然后以各邊的中間一段為底邊分別向外作正三角形,再去掉底邊,反復(fù)進(jìn)行這一過程,就得到一個(gè)“雪花”狀的圖案.設(shè)原正三角形(圖①)的邊長(zhǎng)為1,把圖①、②、③、④……中圖形的周長(zhǎng)依次記為a1,a2,a3,a4,???,得到數(shù)列(參考數(shù)據(jù):lg4≈0.60A.5 B.8 C.10 D.1220.在△ABC中,角A、B、C所對(duì)的邊分別是a,b,c,且a為A.π2 B.2π3 C.π3二、填空題21.在等差數(shù)列{an}中,首項(xiàng)a1=0,公差d≠0,若22.已知數(shù)列{an}中,a1=1,且23.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=2且Sn=(n+1)an+1,則an=.24.若直角三角形的三條邊的長(zhǎng)成等差數(shù)列,則三邊從小到大之比為25.已知等差數(shù)列{an}中,首項(xiàng)為a1(a1≠0),公差為d,前n項(xiàng)和為Sn,且滿足a1S5+15=0,則實(shí)數(shù)d的取值范圍是.26.如圖是瑞典數(shù)學(xué)家科赫在1904年構(gòu)造的能夠描述雪花形狀的圖案.圖形的作法為:從一個(gè)正三角形開始,把每條邊分成三等份,然后以各邊的中間一段為底邊分別向外作正三角形,再去掉底邊.反復(fù)進(jìn)行這一過程,就得到一條“雪花”狀的曲線.設(shè)原正三角形(圖①)的邊長(zhǎng)為1,將圖①,圖②,圖③,圖④中的圖形周長(zhǎng)依次記為C1,C2,C3,C427.已知數(shù)列{an}滿足a1=1,na28.已知數(shù)列{an}滿足a1=1,an29.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且a1+a2=530.若數(shù)列{an}的首項(xiàng)a1=12三、解答題31.已知數(shù)列{an}的前n項(xiàng)之和為Sn(n∈N*),且滿足an+Sn=2n+1.求證數(shù)列{an﹣2}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式.32.已知數(shù)列{an}是以1為首項(xiàng),2為公差的等差數(shù)列,數(shù)列{(1)證明:數(shù)列{b(2)設(shè)cn=(1?2log3bn)33.已知數(shù)列{an},____.在①數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2(1)求數(shù)列{a(2)令bn=log2an,設(shè)數(shù)列{34.首項(xiàng)為a1,公差為d(d∈N?①a3②滿足an>100的試求公差d和首項(xiàng)a135.已知數(shù)列{an},{(1)若bn=n,a(2)設(shè)an=b(3)若數(shù)列{bn}成等差數(shù)列,且b
答案解析部分1.【答案】B2.【答案】A3.【答案】B4.【答案】C5.【答案】A6.【答案】D7.【答案】D8.【答案】C9.【答案】C10.【答案】C11.【答案】D12.【答案】C13.【答案】A14.【答案】A15.【答案】C16.【答案】C17.【答案】C18.【答案】D19.【答案】C20.【答案】C21.【答案】19122.【答案】?23.【答案】2,n=124.【答案】3:4:525.【答案】(﹣∞,﹣3]∪[3,+∞)26.【答案】1627.【答案】an=228.【答案】29.【答案】2n﹣230.【答案】31.【答案】證明:由an+Sn=2n+1,當(dāng)n=1時(shí),a1+a1=2+1,解得a1當(dāng)n≥2時(shí),an﹣1+Sn﹣1=2(n﹣1)+1,∴an﹣an﹣1+an=2,即an變形an∴數(shù)列{an﹣2}是等比數(shù)列,首項(xiàng)為a1﹣2=﹣12,公比為1∴anan32.【答案】(1)證明:由題意可知,an因?yàn)閍1所以當(dāng)n≥2時(shí)a1以上兩式相減,得anbn當(dāng)n=1時(shí),b1=3b1?又bn+1bn=(13(2)解:由(1)知,cn則1cTn33.【答案】(1)解:選①,當(dāng)n=1時(shí),a1=2a當(dāng)n≥2時(shí),SnSn?1①?②得:an即an所以數(shù)列{a所以an選②,當(dāng)n=1時(shí),a1=S當(dāng)n≥2時(shí),an即an當(dāng)n=1時(shí),a1所以an(2)解:因?yàn)閎n=lo所以1b所以1b所以T=1?1因?yàn)閚∈N?,所以34.【答案】解:∵a∴3a由an>100,即∴n>∵滿足an>100的∴14≤69∴69又d∈35.【答案】(1)解:當(dāng)n=1,2時(shí),可得a1+3a從而可得a1(2)解:由a1=?1,a所以b2又因?yàn)閎n所以bn=(b又b2b1=?4所以數(shù)列{b(3)解:由b1=5a2?由bn=a又因?yàn)閿?shù)列{bn}成等差數(shù)列,從而b從而bn+2即a所以an+2?2a所以數(shù)列{a高考數(shù)學(xué)數(shù)列專題知識(shí)訓(xùn)練150題含答案一、單選題1.設(shè)等差數(shù)列{an}滿足(1﹣a1008)5+2016(1﹣a1008)=1,(1﹣a1009)5+2016(1﹣a1009)=﹣1,數(shù)列{an}的前n項(xiàng)和記為Sn,則()A.S2016=2016,a1008>a1009 B.S2016=﹣2016,a1008>a1009C.S2016=2016,a1008<a1009 D.S2016=﹣2016,a1008<a10092.在數(shù)列{an}中,a1=1,an?an﹣1=an﹣1+(﹣1)n(n≥2,n∈N*),則a3的值是()A.12 B.23 C.33.(3﹣2x﹣x2)(2x﹣1)6的展開式中,含x3項(xiàng)的系數(shù)為()A.600 B.360 C.﹣588 D.﹣3604.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2、a4是方程x2﹣x﹣1=0的兩個(gè)實(shí)數(shù)根,則S5的值為()A.52 B.5 C.-525.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=-2012,SA.-2013 B.2013 C.-2012 D.20126.已知{an}為等差數(shù)列,且a3+a8=8,則S10的值為()A.40 B.45 C.50 D.557.已知單調(diào)遞增數(shù)列{an}A.[12,+∞) B.(1,12) C.8.等比數(shù)列{an}中,若a3=2,A.4 B.?4 C.±4 D.59.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S5、S4、S6成等差數(shù)列.則數(shù)列{an}的公比為q的值等于()A.﹣2或1 B.﹣1或2 C.﹣2 D.110.在正項(xiàng)等比數(shù)列{an}中,若a2a6a10=8,則a6=()A.12 B.1 C.2 11.已知x2+yA.1210 B.10 C.3212.在等差數(shù)列{an}中,a1=?6,aA.5 B.6 C.7 D.813.等差數(shù)列{an}的前n項(xiàng)和為Sn,若a3+a7+a11=12,則S13等于()A.52 B.54 C.56 D.5814.已知橢圓C:x2+y2A.14或4 B.14 C.12或215.在等差數(shù)列{an}中,若aA.4 B.6 C.8 D.1016.已知數(shù)列{an}的前n項(xiàng)和為Sn,且A.-10 B.6 C.10 D.1417.在公差不為零的等差數(shù)列{an}中,2a5﹣a72+2a9=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則log2(b5b9)=()A.1 B.2 C.4 D.818.用數(shù)學(xué)歸納法證明1+2+3+...+2n=2n-1+22n-1n∈NA.1項(xiàng) B.k-1項(xiàng) C.k項(xiàng) D.2k項(xiàng)19.如圖是瑞典數(shù)學(xué)家科赫在1904年構(gòu)造的能夠描述雪花形狀的圖案.圖形的作法是從一個(gè)正三角形開始,把每條邊分成三等分,然后以各邊的中間一段為底邊分別向外作正三角形,再去掉底邊,反復(fù)進(jìn)行這一過程,就得到一個(gè)“雪花”狀的圖案.設(shè)原正三角形(圖①)的邊長(zhǎng)為1,把圖①、②、③、④……中圖形的周長(zhǎng)依次記為a1,a2,a3,a4,???,得到數(shù)列(參考數(shù)據(jù):lg4≈0.60A.5 B.8 C.10 D.1220.在△ABC中,角A、B、C所對(duì)的邊分別是a,b,c,且a為A.π2 B.2π3 C.π3二、填空題21.等差數(shù)列{an}中,a1+a5=10,a4=7,則數(shù)列{an}的公差為.22.已知Sn為數(shù)列{an}的前n項(xiàng)和,a12+a23+23.已知數(shù)列{an}的各項(xiàng)均為正整數(shù),對(duì)于n=1,2,3,…,有,當(dāng)a1=11時(shí),a100=;若存在m∈N*,當(dāng)n>m且an為奇數(shù)時(shí),an恒為常數(shù)p,則p的值為.24.兩個(gè)等差數(shù)列{an},{bn},a1+a2+?+an25.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若首項(xiàng)a1=﹣3,公差d=2,Sk=5,則正整數(shù)k=.26.已知數(shù)列{ann+2}為等比數(shù)列,且a2=16,a4=96,則an=27.?dāng)?shù)列32,5328.設(shè)等差數(shù)列{an}的公差為正數(shù),若a1+a2+a3=15,a1a2a3=80,則an=.29.已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S2=230.在等差數(shù)列{an}中,a2=10,a4=18,則此等差數(shù)列的公差d=三、解答題31.設(shè)數(shù)列{an}滿足:a(1)求a1(2)求數(shù)列{a32.已知數(shù)列{an},定義:“S1=a1,當(dāng)n≥2時(shí),S(1)求數(shù)列{an}(2)若bn=2n,33.過點(diǎn)P(1,0)作曲線C:y=xk(x∈(0,+∞),k∈N?,k>1)的切線,切點(diǎn)為Q1,設(shè)Q1在(1)求a1,并求數(shù)列{(2)求證:an34.對(duì)于無窮數(shù)列cn,若對(duì)任意m,n∈N?,且m≠n,存在k∈N?,使得c(1)若數(shù)列bn的通項(xiàng)公式為bn=2n,試判斷數(shù)列b(2)已知數(shù)列an①若an是“G數(shù)列”,a1=8,a2②若對(duì)任意n∈N?,存在k∈N?,使得ak35.已知數(shù)列{an},an≥0,a1=0,an+12+an+1﹣1=an2(n∈N?).記Sn=a1+a2+…+an.Tn=11+a1+1(1+a(1)0≤an<an+1<1;(2)Sn>n﹣2;(3)Tn<3.
答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】C6.【答案】A7.【答案】B8.【答案】A9.【答案】C10.【答案】C11.【答案】C12.【答案】C13.【答案】A14.【答案】A15.【答案】B16.【答案】C17.【答案】C18.【答案】D19.【答案】C20.【答案】C21.【答案】222.【答案】an=n+123.【答案】62;1或524.【答案】6525.【答案】526.【答案】(n+2)?27.【答案】2n+128.【答案】3n﹣129.【答案】3230.【答案】431.【答案】(1)解:由已知a2=a又a2是a1,a3的比例中項(xiàng),所以a22=a(2)解:n是奇數(shù)時(shí),an=2aan+2=2(所以數(shù)列a1S=2=2×3×32.【答案】(1)解:∵an∴a1=?1,當(dāng)n≥2時(shí),Sn=a∴Sn(2)解:cnMn∴2M①-②得?=?2?12(1?∴Mn33.【答案】(1)解:y'若切點(diǎn)是Qn則切線方程為y?a①當(dāng)n=1時(shí),切線過點(diǎn)P(即0?a得a1②當(dāng)n>1時(shí),切線過點(diǎn)Pn?1即0?a得an所以數(shù)列{an}是首項(xiàng)為k所以an(2)解:a≥C34.【答案】(1)解:數(shù)列bn的通項(xiàng)公式為bn=2n,對(duì)任意的m,n∈N?,且m≠n,
都有bm=2m,bn=2n,b(2)解:數(shù)列an為等差數(shù)列,
①若an是“G數(shù)列”,a1=8,a2∈N?,且a2>a1,d=a2?a1>0,d∈N?,
則an=8+n?1d,
對(duì)任意的m,n∈N?,m≠n,am=8+m?1d,an=8+n?1d,
am+an=8+8+m+n?2d,由題意存在k∈N?,使得am+an=ak,
即8+8+m+n?2d=8+k?1d,顯然k≥m+n,
所以m+n?2d+8=k?1d,即k?m?n+1d=8,
k?m?n+1∈N?.所以d是8的正約數(shù),即d=1,2,4,8,
d=1時(shí),a35.【答案】(1)證明:因?yàn)閍n+12+an+1﹣1=an2,(1)所以an2+an﹣1=an﹣12,(2)(1)?(2)得(a所以an+1﹣an與an﹣an﹣1同號(hào),即與a2﹣a1一致.因?yàn)閍2=?1+52∴an+1﹣an>0,∵an+1∴an+1即an+1<1綜上所述:0≤an<an+1<1對(duì)任何n∈N*都成立.(2)證明:由ak+1得an因?yàn)閍1=0,所以Sn∵an<1,所以Sn>n﹣2.(3)證明:由ak+12所以1(1+于是1(1+故當(dāng)n≥3時(shí),Tn又因?yàn)門1<T2<T3,所以Tn<3.高考數(shù)學(xué)數(shù)列專題知識(shí)訓(xùn)練150題含答案一、單選題1.已知數(shù)列{an}是等差數(shù)列,Sn為其前n項(xiàng)和.且a1=2021,A.9 B.10 C.11 D.122.已知數(shù)列{an}滿足a1+12a2+…+1nan=A.(14,+∞) B.[14,+∞)3.(1+2x2)A.-40 B.-25 C.25 D.554.如圖是瑞典數(shù)學(xué)家科赫在1904年構(gòu)造的能夠描述雪花形狀的圖案.圖形的作法是從一個(gè)正三角形開始,把每條邊分成三等分,然后以各邊的中間一段為底邊分別向外作正三角形,再去掉底邊,反復(fù)進(jìn)行這一過程,就得到一個(gè)“雪花”狀的圖案.設(shè)原正三角形(圖①)的邊長(zhǎng)為1,把圖①、②、③、④……中圖形的周長(zhǎng)依次記為a1,a2,a3,a4,???,得到數(shù)列(參考數(shù)據(jù):lg4≈0.60A.5 B.8 C.10 D.125.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且2SA.1或?12 B.-1或12 6.已知等差數(shù)列{an}前9項(xiàng)的和為27,a10=8,則a100=()A.100 B.99 C.98 D.977.?dāng)?shù)列{an}中,已知a1=2,A.19 B.21 C.99 D.1018.已知數(shù)列{an}滿足:a1=a,an+1=A.(0,3) B.(3,+∞) C.[3,4) D.[4,+∞)9.已知等比數(shù)列{an}的公比q=﹣13,則aA.-13 B.-3 C.1310.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a5a6+a2a9=18,則log3a1+log3a2+…+log3a10的值為()A.12 B.10 C.8 D.2+log3511.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,aA.2 B.4 C.8 D.1612.等差數(shù)列{an}共有3m項(xiàng),若前2m項(xiàng)的和為200,前3mA.50 B.75 C.100 D.12513.等差數(shù)列8,5,2,…的前20項(xiàng)和是()A.410 B.﹣410 C.49 D.﹣4914.等差數(shù)列an和bn的前n項(xiàng)和分別為Sn和Tn,且A.23 B.79 C.203115.橢圓5x2?ky2A.-1 B.1 C.5 D.?16.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a3,aA.36 B.40 C.72 D.8017.已知數(shù)列{an}滿足an+1=A.17 B.37 C.5718.設(shè)數(shù)列{an}的前n項(xiàng)和Sn,若A.27 B.?27 C.127 D.19.用數(shù)學(xué)歸納法證明:1+2+3+???+2n=n(2n+1)時(shí),從n=k推證n=k+1時(shí),左邊增加的代數(shù)式是()A.4k+3 B.4k+2 C.2k+2 D.2k+120.在△ABC中,角A、B、C所對(duì)的邊分別是a,b,c,且a為A.π2 B.2π3 C.π3二、填空題21.已知{an}為等差數(shù)列,a422.?dāng)?shù)列{an}滿足an+1=2anan23.若f(n)=12+22+32+…+(2n)2,則f(k+1)與f(k)的遞推關(guān)系式是.24.兩個(gè)等差數(shù)列{an},{bn},a1+a2+?+an25.已知{an}是公差不為0的等差數(shù)列,Sn是其前n項(xiàng)和,若a2a3=a4a5,S9=1,則a1的值是.26.在等比數(shù)列{an}中,已知a4=7,a8=63,則a6=27.已知數(shù)列{an}前n項(xiàng)和Sn滿足S28.在等差數(shù)列{an}中,a29.已知等比數(shù)列19,13,1,???前n項(xiàng)和為Sn30.已知等差數(shù)列{an}的前三項(xiàng)為a﹣1,a+1,2a+3,則此數(shù)列的通項(xiàng)公式為.三、解答題31.解答題(1)在等比數(shù)列{an}中,a5=162,公比q=3,前n項(xiàng)和Sn=242,求首項(xiàng)a1和項(xiàng)數(shù)n.(2)有四個(gè)數(shù),其中前三個(gè)數(shù)成等比數(shù)列,其積為216,后三個(gè)數(shù)成等差數(shù)列,其和為36,求這四個(gè)數(shù).32.已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d=1,前n項(xiàng)和為Sn,bn=1sπ(1)求數(shù)列{bn}的通項(xiàng)公式;(2)設(shè)數(shù)列{bn}前n項(xiàng)和為Tn,求Tn.33.已知數(shù)列{an}的前n項(xiàng)和為S(1)求數(shù)列{a(2)設(shè)bn=1an?1an+134.已知數(shù)列{an}的前n項(xiàng)和公式:Sn=2n2﹣26n.(1)求通項(xiàng)公式,試判斷這個(gè)數(shù)列是等差數(shù)列嗎?(2)求使得Sn最小的序號(hào)n的值.35.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知S2=4,an+1=2Sn+1,n∈N*.(1)求通項(xiàng)公式an;(2)求數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和.
答案解析部分1.【答案】C2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】C7.【答案】D8.【答案】B9.【答案】B10.【答案】B11.【答案】B12.【答案】B13.【答案】B14.【答案】D15.【答案】A16.【答案】A17.【答案】D18.【答案】B19.【答案】A20.【答案】C21.【答案】622.【答案】1223.【答案】f(k+1)=f(k)+(2k+1)2+(2k+2)224.【答案】6525.【答案】?26.【答案】2127.【答案】1128.【答案】(29.【答案】1030.【答案】an=2n﹣331.【答案】(1)解:a∴a1=2,n=5(2)解:設(shè)這四個(gè)數(shù)分別為a由題意a3∴a=6,q=2∴四數(shù)為3、6、12、1832.【答案】(1)解:∵等差數(shù)列{an}中a1=1,公差d=1∴sn∴b(2)解:b∴b1+b233.【答案】(1)解:由題知Sn=2兩式相減得a又a1=S1(2)證明:由(1)知bn所以T=(=1又12n+134.【答案】【解答】(1)當(dāng)n≥2時(shí),有an=Sn﹣Sn﹣1=2n2﹣26n﹣2(n﹣1)2+26(n﹣1)=4n﹣28,經(jīng)驗(yàn)證a1=S1=﹣24也適合上式,∴an=4n﹣28,∵an﹣an﹣1=4,∴這個(gè)數(shù)列是等差數(shù)列.(2)an=4n﹣28≤0,∴n≤7,∴使得Sn最小的序號(hào)n的值為6或7.35.【答案】(1)解:∵S2=4,an+1=2Sn+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,當(dāng)n≥2時(shí),an+1=2Sn+1,an=2Sn﹣1+1,兩式相減得an+1﹣an=2(Sn﹣Sn﹣1)=2an,即an+1=3an,當(dāng)n=1時(shí),a1=1,a2=3,滿足an+1=3an,∴an+1an則通項(xiàng)公式an=3n﹣1(2)解:an﹣n﹣2=3n﹣1﹣n﹣2,設(shè)bn=|an﹣n﹣2|=|3n﹣1﹣n﹣2|,則b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,當(dāng)n≥3時(shí),3n﹣1﹣n﹣2>0,則bn=|an﹣n﹣2|=3n﹣1﹣n﹣2,此時(shí)數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和Tn=3+9(1?3n?2)1?3﹣則Tn=2,n=13,n=2高考數(shù)學(xué)數(shù)列專題知識(shí)訓(xùn)練150題含答案一、單選題1.已知某等差數(shù)列共有10項(xiàng),其奇數(shù)項(xiàng)之和為15,偶數(shù)項(xiàng)之和為30,則其公差為()A.5 B.4 C.3 D.22.已知數(shù)列{an}滿足a1=15,a2=433,且2an+1=an+an+2.若ak?ak+1A.21 B.22 C.23 D.243.將多項(xiàng)式a6x6+aA.20 B.15 C.10 D.04.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=25,則a3的值為()A.2 B.5 C.10 D.155.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且2SA.1或?12 B.-1或12 6.已知等差數(shù)列{an}的公差d<0,前n項(xiàng)和Sn滿足:A.S9 B.S10 C.S197.已知an是不大于n的正整數(shù),其中n∈N?A.23 B.24 C.25 D.268.在等比數(shù)列{an}中,aA.56 B.65 C.239.已知等比數(shù)列{an},Sn為其前n項(xiàng)和,S3=10A.50 B.60 C.70 D.9010.在等比數(shù)列an中,若a3aA.2 B.3 C.4 D.911.已知數(shù)列{an}滿足3an+1=9×3A.?13 B.3 C.?3 12.在等差數(shù)列{an}中,已知a3+a5=2,a7+a10+a13=9,則此數(shù)列的公差為()A.13 B.3 C.12 13.?dāng)?shù)列1,2,1,3,2,1,4,3,2,1,5,4,3,2,1,?,則此數(shù)列的第50項(xiàng)是()A.5 B.6 C.7 D.814.過橢圓x2A.(0,32] B.[32,1)15.等差數(shù)列{an}中,anA.1 B.{1,C.{12}16.已知正項(xiàng)數(shù)列{an}中,a1=1,a2=2,2an2=an+12+an﹣12(n≥2),則a6等于()A.16 B.8 C.22 17.已知等比數(shù)列{an}中,若a4=10,a8=52,那么a6A.-5 B.5 C.±5 D.2518.用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=1?an+21?aA.1 B.1+a C.1+a+a2 D.1+a+a2+a419.如圖是瑞典數(shù)學(xué)家科赫在1904年構(gòu)造的能夠描述雪花形狀的圖案.圖形的作法是從一個(gè)正三角形開始,把每條邊分成三等分,然后以各邊的中間一段為底邊分別向外作正三角形,再去掉底邊,反復(fù)進(jìn)行這一過程,就得到一個(gè)“雪花”狀的圖案.設(shè)原正三角形(圖①)的邊長(zhǎng)為1,把圖①、②、③、④……中圖形的周長(zhǎng)依次記為a1,a2,a3,a4,???,得到數(shù)列(參考數(shù)據(jù):lg4≈0.60A.5 B.8 C.10 D.1220.在△ABC中,角A、B、C所對(duì)的邊分別是a,b,c,且a為A.π2 B.2π3 C.π3二、填空題21.等差數(shù)列{an}中,已知a3=5,a2+a5=12,an=29,則n為.22.若數(shù)列{an}是正項(xiàng)數(shù)列,且a123.對(duì)于一個(gè)給定的數(shù)列{an},把它的連續(xù)兩項(xiàng)an+1與an的差an+1?an記為bn,得到一個(gè)新數(shù)列{bn},把數(shù)列{bn}稱為原數(shù)列{an}的一階差數(shù)列.若數(shù)列{b24.在等差數(shù)列{an}中,a225.已知數(shù)列{an}的通項(xiàng)公式an=19﹣2n,則Sn取得最大值時(shí)n的值為.26.已知f(x)=1x+1,各項(xiàng)都為正數(shù)的數(shù)列{an}滿足a1=1,an+2=f(an),若a2010=a2012,則a1800+a15的值是27.已知數(shù)列{an}的前n項(xiàng)和Sn=n2,則a2016=.28.在等差數(shù)列{an}中,a1=﹣1,a4=8,則公差d=.29.在等比數(shù)列{an}30.已知等差數(shù)列{an}的首項(xiàng)為a,公差為﹣4,其前n項(xiàng)和為Sn.若存在m∈N+,使得Sm=36,則實(shí)數(shù)a的最小值為.三、解答題31.和為114的三個(gè)數(shù)是一個(gè)公比不為1的等比數(shù)列的連續(xù)三項(xiàng),也是一個(gè)等差數(shù)列的第1項(xiàng),第4項(xiàng),第25項(xiàng),求這三個(gè)數(shù).32.已知數(shù)列{an}滿足:2n?1a(1)求a1,a(2)若數(shù)列{bn}滿足:b1=1,b33.?dāng)?shù)列{an}滿足a1=1,數(shù)列{(1)求數(shù)列{a(2)設(shè)bn=3n?34.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=3,S11=0.(1)求數(shù)列{an}的通項(xiàng)公式;(2)當(dāng)n為何值時(shí),Sn最大,并求Sn的最大值.35.已知數(shù)列{an}的前n項(xiàng)和為Sn,π6,Sn=Sn?1+an?1+12(Ⅰ)求數(shù)列{a(Ⅱ)求證:數(shù)列{b(Ⅲ)求數(shù)列{bn}
答案解析部分1.【答案】C2.【答案】C3.【答案】D4.【答案】B5.【答案】A6.【答案】B7.【答案】B8.【答案】C9.【答案】C10.【答案】B11.【答案】C12.【答案】A13.【答案】B14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】C19.【答案】C20.【答案】C21.【答案】1522.【答案】423.【答案】224.【答案】1825.【答案】926.【答案】4+1727.【答案】403128.【答案】329.【答案】430.【答案】1531.【答案】【解答】設(shè)等差數(shù)列的首項(xiàng)為a,公差為d,則它的第1,4,25項(xiàng)分別為a,a+3d,a+24d,∵它們成等比數(shù)列,∴(a+3d)2=a(a+24d)∴a2+6ad+9d2=a2+24ad∴9d2=18ad,∵等比數(shù)列的公比不為1∴d≠0∴9d=18a…(1)由根據(jù)題意有:a+(a+3d)+(a+24d)=114,即3a+27d=114…(2)由(1)(2)可以解得,a=2,d=4∴這三個(gè)數(shù)就是2,14,98.32.【答案】(1)解:n=1時(shí)a1n=2時(shí)22n?12n?2a1①?2×②?ana1=1滿足上式,故(2)解:bn+1?bbn2b②?①得bb1=1滿足上式,故33.【答案】(1)解:由已知可得,當(dāng)n≥2時(shí),ann=當(dāng)n=1時(shí),a1=1所以數(shù)列{an}(2)解:由(1)知,an所以bnSn3由①-②得,?2S所以Sn34.【答案】(1)解:由等差數(shù)列的求和公式和性質(zhì)可得:S11=11×a6=0,解得a6=2,又∵a3=3,故數(shù)列{an}的公差d=﹣1,故an=a3+(n﹣3)×﹣1=6﹣n(2)解:由(1)得a1=5,故Sn=a1n+n(n?1)2d=?12n故當(dāng)n=5,或6時(shí),Sn最大,Sn的最大值為1535.【答案】解:(Ⅰ)由Sn=即an?an?1=則數(shù)列{an}因此an=(Ⅱ)證明:因?yàn)?bn?所以bn=1bn?an=13bn?1bn?1?an?1=bn?1所以bn?a因?yàn)閎所以數(shù)列{bn?an(Ⅲ)由(Ⅱ)得b所以bn=bn?bn?1=12n+1所以{b因?yàn)楫?dāng)n=1時(shí),b1=34當(dāng)n=3時(shí),b所以數(shù)列{bn}記數(shù)列{bn}的前n項(xiàng)和為Tn,則高考數(shù)學(xué)數(shù)列專題知識(shí)訓(xùn)練150題含答案一、單選題1.已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為SnA.73 B.3827 C.23172.?dāng)?shù)列{an}滿足an=2A.4 B.5 C.6 D.73.已知(x+2)n=a0+a1x+a2x2+?+A.8 B.7 C.6 D.54.“積跬步以至千里,積小流以成江海.”出自荀子《勸學(xué)篇》.原文為“故不積跬步,無以至千里;不積小流,無以成江海.”數(shù)學(xué)上這樣的兩個(gè)公式:①1.0130A.1.69倍 B.1.96倍 C.1.78倍 D.2.8倍5.已知等差數(shù)列an,bn的前n項(xiàng)和分別為Sn與TA.53 B.2011 C.38236.已知數(shù)列{an}是等差數(shù)列,若它的前n項(xiàng)和Sn有最小值,且a2012a2011A.4022 B.2022 C.4021 D.20217.等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為SnA.34 B.56 C.9108.已知數(shù)列{an}的通項(xiàng)公式為an=?2n2A.2 B.3 C.4 D.59.等比數(shù)列{an}的前n項(xiàng)和Sn=3A.1 B. C.17 D.1810.設(shè)等比數(shù)列an的公比q=2,前n項(xiàng)和為Sn,則A.2 B.4 C.152 D.11.在前n項(xiàng)和為Sn的等比數(shù)列{an}中,a2A.80 B.85 C.90 D.9512.已知數(shù)列{an}A.150 B.180 C.300 D.36013.已知等差數(shù)列{an}中,a2=1,a6=21,則a4=()A.22 B.16 C.11 D.514.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a3+a8=13,且S7=35.則a7=()A.11 B.10 C.9 D.815.在△ABC中,角A、B、C所對(duì)的邊分別是a,b,c,且a為A.π2 B.2π3 C.π316.橢圓x2a2+y2b2=1(a>b>0)的左、右頂點(diǎn)分別是A,B,左、右焦點(diǎn)分別是F1,F(xiàn)2A.14 B.55 C.1217.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,d為數(shù)列{an}的公差,且S6>S7>S5,有下列四個(gè)命題:①A.②③ B.①② C.③④ D.①④18.各項(xiàng)均正的數(shù)列{an}滿足aA.n?2n?1 B.(n+1)?2n C.19.在等比數(shù)列{an}中,若an>0,a7=22,則1a3A.22 B.4 C.8 D.1620.用數(shù)學(xué)歸納法證明不等式12+13+…+12A.k B.2k﹣1 C.2k D.2k+1二、填空題21.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S22.已知數(shù)列{an}的前n項(xiàng)和Sn23.已知數(shù)列{an}的前n項(xiàng)和公式為Sn=n2,若bn=2a24.設(shè)等差數(shù)列{an}的公差為負(fù)數(shù),若a1+a2+a3=15,a1a2a3=80,則a8+a9+a10=.25.已知{an}為等差數(shù)列,Sn為其前n項(xiàng)和,若a2=4,S8=﹣8,則a10=.26.若m個(gè)不全相等的正數(shù)a1,a2,…am依次圍成一個(gè)圓圈使每個(gè)ak(1≤k≤m,k∈N)都是其左右相鄰兩個(gè)數(shù)平方的等比中項(xiàng),則正整數(shù)m的最小值是.27.已知數(shù)列{an}的首項(xiàng)a1=2,an+1=2anan+2(n=1,2,3,…),則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 國(guó)際發(fā)展異常處理辦法
- 2025購買設(shè)備合同范文
- 跨部門協(xié)作:班組長(zhǎng)績(jī)效管理實(shí)踐
- 2024年風(fēng)險(xiǎn)投資股權(quán)激勵(lì)合同
- 競(jìng)爭(zhēng)情報(bào)提案管理辦法
- 藥品電子商務(wù)法律規(guī)范
- 造紙行業(yè)假期管理指南
- 輪胎跨界合作供貨協(xié)議
- 廣立電梯合同范本
- 家庭護(hù)理師聘用合同
- 英語謎語100個(gè)及答案簡(jiǎn)單
- 2023乙型肝炎病毒標(biāo)志物臨床應(yīng)用專家共識(shí)(完整版)
- 2023年10月自考02375運(yùn)籌學(xué)基礎(chǔ)試題及答案含評(píng)分標(biāo)準(zhǔn)
- 住宿服務(wù)投標(biāo)方案(技術(shù)方案)
- 遼寧省沈陽市2022-2023學(xué)年六年級(jí)上學(xué)期語文期末試卷(含答案)
- 23J916-1:住宅排氣道(一)
- 四年級(jí)全冊(cè)《勞動(dòng)》課程知識(shí)點(diǎn)匯總精排
- 儲(chǔ)能項(xiàng)目用戶側(cè)投資測(cè)算表
- 脊柱四肢及肛門直腸檢查
- 高中政治期末綜合檢測(cè)部編版選修1
- 小學(xué)科學(xué)五年級(jí)上冊(cè)期末測(cè)試質(zhì)量分析
評(píng)論
0/150
提交評(píng)論