![內(nèi)蒙古通遼市科左后旗甘旗卡第二中學(xué)2025屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view11/M03/04/1F/wKhkGWd25VqAHrL1AAIw5XNVCVo594.jpg)
![內(nèi)蒙古通遼市科左后旗甘旗卡第二中學(xué)2025屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view11/M03/04/1F/wKhkGWd25VqAHrL1AAIw5XNVCVo5942.jpg)
![內(nèi)蒙古通遼市科左后旗甘旗卡第二中學(xué)2025屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view11/M03/04/1F/wKhkGWd25VqAHrL1AAIw5XNVCVo5943.jpg)
![內(nèi)蒙古通遼市科左后旗甘旗卡第二中學(xué)2025屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view11/M03/04/1F/wKhkGWd25VqAHrL1AAIw5XNVCVo5944.jpg)
![內(nèi)蒙古通遼市科左后旗甘旗卡第二中學(xué)2025屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view11/M03/04/1F/wKhkGWd25VqAHrL1AAIw5XNVCVo5945.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
內(nèi)蒙古通遼市科左后旗甘旗卡第二中學(xué)2025屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線在點(diǎn),處的切線重合,則實(shí)數(shù)的最小值是()A. B. C. D.12.的圖象如圖所示,,若將的圖象向左平移個(gè)單位長(zhǎng)度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.3.已知向量,(其中為實(shí)數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.我國(guó)古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個(gè)問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.15.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.66.已知是虛數(shù)單位,則復(fù)數(shù)()A. B. C.2 D.7.已知點(diǎn)為雙曲線的右焦點(diǎn),直線與雙曲線交于A,B兩點(diǎn),若,則的面積為()A. B. C. D.8.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”9.一個(gè)袋中放有大小、形狀均相同的小球,其中紅球1個(gè)、黑球2個(gè),現(xiàn)隨機(jī)等可能取出小球,當(dāng)有放回依次取出兩個(gè)小球時(shí),記取出的紅球數(shù)為;當(dāng)無放回依次取出兩個(gè)小球時(shí),記取出的紅球數(shù)為,則()A., B.,C., D.,10.已知函數(shù),則不等式的解集是()A. B. C. D.11.是邊長(zhǎng)為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時(shí),四棱錐的體積為()A. B. C. D.12.已知集合A,則集合()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知非零向量,滿足,且,則與的夾角為____________.14.集合,,則_____.15.用數(shù)字、、、、、組成無重復(fù)數(shù)字的位自然數(shù),其中相鄰兩個(gè)數(shù)字奇偶性不同的有_____個(gè).16.在四面體中,與都是邊長(zhǎng)為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知(1)若,且函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的范圍;(2)若函數(shù)有兩個(gè)極值點(diǎn),且存在滿足,令函數(shù),試判斷零點(diǎn)的個(gè)數(shù)并證明.18.(12分)如圖,橢圓的長(zhǎng)軸長(zhǎng)為,點(diǎn)、、為橢圓上的三個(gè)點(diǎn),為橢圓的右端點(diǎn),過中心,且,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)、是橢圓上位于直線同側(cè)的兩個(gè)動(dòng)點(diǎn)(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.19.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點(diǎn)P在底面上的射影為的中點(diǎn)G,點(diǎn)E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.20.(12分)在中,角的對(duì)邊分別為,已知.(1)求角的大??;(2)若,求的面積.21.(12分)若不等式在時(shí)恒成立,則的取值范圍是__________.22.(10分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線上的點(diǎn)M對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn).(1)求曲線,的直角坐標(biāo)方程;(2)若點(diǎn)A,B為曲線上的兩個(gè)點(diǎn)且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
先根據(jù)導(dǎo)數(shù)的幾何意義寫出在兩點(diǎn)處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹,從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng)時(shí),,則;當(dāng)時(shí),則.設(shè)為函數(shù)圖像上的兩點(diǎn),當(dāng)或時(shí),,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時(shí),的最大值為.則在上單調(diào)遞減,則.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出和的函數(shù)關(guān)系式.本題的易錯(cuò)點(diǎn)是計(jì)算.2、B【解析】
根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結(jié)合題意可得出關(guān)于的等式,即可得出結(jié)果.【詳解】由圖象可得,函數(shù)的最小正周期為,,,則,,取,,則,,,可得,當(dāng)時(shí),.故選:B.【點(diǎn)睛】本題考查利用圖象求函數(shù)解析式,同時(shí)也考查了利用函數(shù)圖象變換求參數(shù),考查計(jì)算能力,屬于中等題.3、A【解析】
結(jié)合向量垂直的坐標(biāo)表示,將兩個(gè)條件相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷出充分、必要條件.【詳解】由,則,所以;而當(dāng),則,解得或.所以“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本小題考查平面向量的運(yùn)算,向量垂直,充要條件等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,應(yīng)用意識(shí).4、B【解析】
將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實(shí)際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項(xiàng)和為,,,求的值.因?yàn)?,解得,,解得.故選B.【點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計(jì)算,對(duì)于解決實(shí)際問題很有幫助.5、B【解析】
利用等差數(shù)列的通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.6、A【解析】
根據(jù)復(fù)數(shù)的基本運(yùn)算求解即可.【詳解】.故選:A【點(diǎn)睛】本題主要考查了復(fù)數(shù)的基本運(yùn)算,屬于基礎(chǔ)題.7、D【解析】
設(shè)雙曲線C的左焦點(diǎn)為,連接,由對(duì)稱性可知四邊形是平行四邊形,設(shè),得,求出的值,即得解.【詳解】設(shè)雙曲線C的左焦點(diǎn)為,連接,由對(duì)稱性可知四邊形是平行四邊形,所以,.設(shè),則,又.故,所以.故選:D【點(diǎn)睛】本題主要考查雙曲線的簡(jiǎn)單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.8、B【解析】
解不等式,可判斷A選項(xiàng)的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項(xiàng)的正誤;利用原命題與否命題、逆否命題的關(guān)系可判斷C、D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】解不等式,解得,則命題為假命題,A選項(xiàng)錯(cuò)誤;命題的逆命題是“若,則”,該命題為真命題,B選項(xiàng)正確;命題的否命題是“若,則”,C選項(xiàng)錯(cuò)誤;命題的逆否命題是“若,則”,D選項(xiàng)錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查四種命題的關(guān)系,考查推理能力,屬于基礎(chǔ)題.9、B【解析】
分別求出兩個(gè)隨機(jī)變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點(diǎn)睛】離散型隨機(jī)變量的分布列的計(jì)算,應(yīng)先確定隨機(jī)變量所有可能的取值,再利用排列組合知識(shí)求出隨機(jī)變量每一種取值情況的概率,然后利用公式計(jì)算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.10、B【解析】
由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】函數(shù),可得,時(shí),,單調(diào)遞增,∵,故不等式的解集等價(jià)于不等式的解集..∴.故選:B.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,根據(jù)單調(diào)性解不等式,屬于中檔題.11、D【解析】
首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時(shí),外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時(shí),外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對(duì)于等腰梯形,如圖:因?yàn)槭堑冗吶切?,、、分別為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.【點(diǎn)睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個(gè)是一個(gè)難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.12、A【解析】
化簡(jiǎn)集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點(diǎn)睛】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、(或?qū)懗桑窘馕觥?/p>
設(shè)與的夾角為,通過,可得,化簡(jiǎn)整理可求出,從而得到答案.【詳解】設(shè)與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.【點(diǎn)睛】本題主要考查向量的數(shù)量積運(yùn)算,向量垂直轉(zhuǎn)化為數(shù)量積為0是解決本題的關(guān)鍵,意在考查學(xué)生的轉(zhuǎn)化能力,分析能力及計(jì)算能力.14、【解析】
分析出集合A為奇數(shù)構(gòu)成的集合,即可求得交集.【詳解】因?yàn)楸硎緸槠鏀?shù),故.故答案為:【點(diǎn)睛】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡(jiǎn)單題.15、【解析】
對(duì)首位數(shù)的奇偶進(jìn)行分類討論,利用分步乘法計(jì)數(shù)原理和分類加法計(jì)數(shù)原理可得出結(jié)果.【詳解】①若首位為奇數(shù),則第一、三、五個(gè)數(shù)位上的數(shù)都是奇數(shù),其余三個(gè)數(shù)位上的數(shù)為偶數(shù),此時(shí),符號(hào)條件的位自然數(shù)個(gè)數(shù)為個(gè);②若首位數(shù)為偶數(shù),則首位數(shù)不能為,可排在第三或第五個(gè)數(shù)位上,第二、四、六個(gè)數(shù)位上的數(shù)為奇數(shù),此時(shí),符合條件的位自然數(shù)個(gè)數(shù)為個(gè).綜上所述,符合條件的位自然數(shù)個(gè)數(shù)為個(gè).故答案為:.【點(diǎn)睛】本題考查數(shù)的排列問題,要注意首位數(shù)字的分類討論,考查分步乘法計(jì)數(shù)和分類加法計(jì)數(shù)原理的應(yīng)用,考查計(jì)算能力,屬于中等題.16、【解析】
先確定球心的位置,結(jié)合勾股定理可求球的半徑,進(jìn)而可得球的面積.【詳解】取的外心為,設(shè)為球心,連接,則平面,取的中點(diǎn),連接,,過做于點(diǎn),易知四邊形為矩形,連接,,設(shè),.連接,則,,三點(diǎn)共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點(diǎn)睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個(gè)思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長(zhǎng)方體外接球半徑是其對(duì)角線的一半.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)函數(shù)有兩個(gè)零點(diǎn)和【解析】試題分析:(1)求導(dǎo)后根據(jù)函數(shù)在區(qū)間單調(diào)遞增,導(dǎo)函數(shù)大于或等于0(2)先判斷為一個(gè)零點(diǎn),然后再求導(dǎo),根據(jù),化簡(jiǎn)求得另一個(gè)零點(diǎn)。解析:(1)當(dāng)時(shí),,因?yàn)楹瘮?shù)在上單調(diào)遞增,所以當(dāng)時(shí),恒成立.[來源:Z&X&X&K]函數(shù)的對(duì)稱軸為.①,即時(shí),,即,解之得,解集為空集;②,即時(shí),即,解之得,所以③,即時(shí),即,解之得,所以綜上所述,當(dāng)函數(shù)在區(qū)間上單調(diào)遞增.(2)∵有兩個(gè)極值點(diǎn),∴是方程的兩個(gè)根,且函數(shù)在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減.∵∴函數(shù)也是在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減∵,∴是函數(shù)的一個(gè)零點(diǎn).由題意知:∵,∴,∴∴,∴又=∵是方程的兩個(gè)根,∴,,∴∵函數(shù)圖像連續(xù),且在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),∴函數(shù)有兩個(gè)零點(diǎn)和.18、(1);(2)詳見解析.【解析】試題分析:(1)利用題中條件先得出的值,然后利用條件,結(jié)合橢圓的對(duì)稱性得到點(diǎn)的坐標(biāo),然后將點(diǎn)的坐標(biāo)代入橢圓方程求出的值,從而確定橢圓的方程;(2)將條件得到直線與的斜率直線的關(guān)系(互為相反數(shù)),然后設(shè)直線的方程為,將此直線的方程與橢圓方程聯(lián)立,求出點(diǎn)的坐標(biāo),注意到直線與的斜率之間的關(guān)系得到點(diǎn)的坐標(biāo),最后再用斜率公式證明直線的斜率為定值.(1),,又是等腰三角形,所以,把點(diǎn)代入橢圓方程,求得,所以橢圓方程為;(2)由題易得直線、斜率均存在,又,所以,設(shè)直線代入橢圓方程,化簡(jiǎn)得,其一解為,另一解為,可求,用代入得,,為定值.考點(diǎn):1.橢圓的方程;2.直線與橢圓的位置關(guān)系;3.兩點(diǎn)間連線的斜率19、(1)證明見解析(2)【解析】
(1)由等腰梯形的性質(zhì)可證得,由射影可得平面,進(jìn)而求證;(2)取的中點(diǎn)F,連接,以G為原點(diǎn),所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標(biāo)系,分別求得平面與平面的法向量,再利用數(shù)量積求解即可.【詳解】(1)在等腰梯形中,點(diǎn)E在線段上,且,點(diǎn)E為上靠近C點(diǎn)的四等分點(diǎn),,,,,點(diǎn)P在底面上的射影為的中點(diǎn)G,連接,平面,平面,.又,平面,平面,平面.(2)取的中點(diǎn)F,連接,以G為原點(diǎn),所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標(biāo)系,如圖所示,由(1)易知,,,又,,,為等邊三角形,,則,,,,,,,,,設(shè)平面的法向量為,則,即,令,則,,,設(shè)平面的法向量為,則,即,令,則,,,設(shè)平面與平面的夾角為θ,則二面角的余弦值為.【點(diǎn)睛】本題考查線面垂直的證明,考查空間向量法求二面角,考查運(yùn)算能力與空間想象能力.20、(1);(2)【解析】
(1)利用正弦定理邊化角,再利用二倍角的正弦公式與正弦的和角公式化簡(jiǎn)求解即可.(2)由(1)有,根據(jù)正弦定理可得,進(jìn)而求得的值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年二年級(jí)班主任年度考核個(gè)人總結(jié)例文(二篇)
- 2025年個(gè)人租房的合同協(xié)議(4篇)
- 2025年企業(yè)公轉(zhuǎn)私借款合同模板(2篇)
- 民航旅客運(yùn)輸安全協(xié)議
- 文化產(chǎn)業(yè)土地交易居間協(xié)議
- 汽車維修傭金居間合同樣本
- 洗浴中心裝修安全合同
- 教育機(jī)構(gòu)貸款居間協(xié)議
- 汽車維修廠租賃居間協(xié)議
- 消費(fèi)品以舊換新策略在市場(chǎng)中的適應(yīng)性與優(yōu)化
- 斷絕關(guān)系協(xié)議書范文參考(5篇)
- 量子力學(xué)課件1-2章-波函數(shù)-定態(tài)薛定諤方程
- 最新變態(tài)心理學(xué)課件
- 工程洽商記錄表格
- 2021最新版三年級(jí)下冊(cè)生命-生態(tài)-安全教案
- 【自考練習(xí)題】石家莊學(xué)院概率論與數(shù)理統(tǒng)計(jì)真題匯總(附答案解析)
- 農(nóng)村集體“三資”管理流程圖
- 高中英語 牛津譯林版必修第三冊(cè) Unit 2詞匯全解
- (新版教材)粵教粵科版三年級(jí)下冊(cè)科學(xué)全冊(cè)教學(xué)課件PPT
- 混合痔的治療PPT課件
- 質(zhì)量管理體系中的術(shù)語
評(píng)論
0/150
提交評(píng)論