2025屆北京市海淀清華附中高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2025屆北京市海淀清華附中高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2025屆北京市海淀清華附中高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2025屆北京市海淀清華附中高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2025屆北京市海淀清華附中高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆北京市海淀清華附中高三六校第一次聯(lián)考數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一小商販準備用元錢在一批發(fā)市場購買甲、乙兩種小商品,甲每件進價元,乙每件進價元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購買甲、乙兩種商品的件數(shù)應(yīng)分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件2.已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為()A.1 B. C.2 D.3.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.4.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.5.某工廠只生產(chǎn)口罩、抽紙和棉簽,如圖是該工廠年至年各產(chǎn)量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產(chǎn)量分別占、、),根據(jù)該圖,以下結(jié)論一定正確的是()A.年該工廠的棉簽產(chǎn)量最少B.這三年中每年抽紙的產(chǎn)量相差不明顯C.三年累計下來產(chǎn)量最多的是口罩D.口罩的產(chǎn)量逐年增加6.函數(shù)()的圖像可以是()A. B.C. D.7.若,,則的值為()A. B. C. D.8.某人造地球衛(wèi)星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點離地面的距離為,則該衛(wèi)星遠地點離地面的距離為()A. B.C. D.9.已知為虛數(shù)單位,若復(fù)數(shù),則A. B.C. D.10.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或11.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.12.古希臘數(shù)學(xué)家畢達哥拉斯在公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為拋物線:的焦點,過作兩條互相垂直的直線,,直線與交于、兩點,直線與交于、兩點,則的最小值為__________.14.若的展開式中所有項的系數(shù)之和為,則______,含項的系數(shù)是______(用數(shù)字作答).15.已知,則=___________,_____________________________16.如圖是某幾何體的三視圖,俯視圖中圓的兩條半徑長為2且互相垂直,則該幾何體的體積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,其中.(1)當時,設(shè)函數(shù),求函數(shù)的極值.(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:.18.(12分)已知都是大于零的實數(shù).(1)證明;(2)若,證明.19.(12分)在直角坐標系中,曲線上的任意一點到直線的距離比點到點的距離小1.(1)求動點的軌跡的方程;(2)若點是圓上一動點,過點作曲線的兩條切線,切點分別為,求直線斜率的取值范圍.20.(12分)已知(1)當時,判斷函數(shù)的極值點的個數(shù);(2)記,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,求證:.21.(12分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,,是線段的中點.(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.22.(10分)已知矩陣不存在逆矩陣,且非零特低值對應(yīng)的一個特征向量,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由題意列出約束條件和目標函數(shù),數(shù)形結(jié)合即可解決.【詳解】設(shè)購買甲、乙兩種商品的件數(shù)應(yīng)分別,利潤為元,由題意,畫出可行域如圖所示,顯然當經(jīng)過時,最大.故選:D.【點睛】本題考查線性目標函數(shù)的線性規(guī)劃問題,解決此類問題要注意判斷,是否是整數(shù),是否是非負數(shù),并準確的畫出可行域,本題是一道基礎(chǔ)題.2、B【解析】

畫出約束條件的可行域,利用目標函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.3、C【解析】

判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎(chǔ)題.4、B【解析】

根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調(diào),故排除C;故選:B【點睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎(chǔ)題.5、C【解析】

根據(jù)該廠每年產(chǎn)量未知可判斷A、B、D選項的正誤,根據(jù)每年口罩在該廠的產(chǎn)量中所占的比重最大可判斷C選項的正誤.綜合可得出結(jié)論.【詳解】由于該工廠年至年的產(chǎn)量未知,所以,從年至年棉簽產(chǎn)量、抽紙產(chǎn)量以及口罩產(chǎn)量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產(chǎn)的口罩占該工廠的總產(chǎn)量的比重是最大的,則三年累計下來產(chǎn)量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.6、B【解析】

根據(jù),可排除,然后采用導(dǎo)數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【點睛】本題考查函數(shù)的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎(chǔ)題.7、A【解析】

取,得到,取,則,計算得到答案.【詳解】取,得到;取,則.故.故選:.【點睛】本題考查了二項式定理的應(yīng)用,取和是解題的關(guān)鍵.8、A【解析】

由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設(shè)衛(wèi)星近地點,遠地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關(guān)鍵,屬于中檔題.9、B【解析】

因為,所以,故選B.10、D【解析】

由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.11、D【解析】

先計算,然后將進行平方,,可得結(jié)果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數(shù)量積的運算和模的計算,屬基礎(chǔ)題。12、B【解析】

推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),∴6和28恰好在同一組的概率.故選:B.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、16.【解析】由題意可知拋物線的焦點,準線為設(shè)直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯(lián)立,消去得設(shè)點由跟與系數(shù)的關(guān)系得,同理∵根據(jù)拋物線的性質(zhì),拋物線上的點到焦點的距離等于到準線的距離∴,同理∴,當且僅當時取等號.故答案為16點睛:(1)與拋物線有關(guān)的最值問題,一般情況下都與拋物線的定義有關(guān).利用定義可將拋物線上的點到焦點的距離轉(zhuǎn)化為到準線的距離,可以使運算化繁為簡.“看到準線想焦點,看到焦點想準線”,這是解決拋物線焦點弦有關(guān)問題的重要途徑;(2)圓錐曲線中的最值問題,可利用基本不等式求解,但要注意不等式成立的條件.14、【解析】的展開式中所有項的系數(shù)之和為,,,項的系數(shù)是,故答案為(1),(2).15、?196?3【解析】

由二項式定理及二項式展開式通項得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【詳解】由二項式(1?2x)7展開式的通項得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【點睛】本題考查二項式定理及其通項,屬于中等題.16、20【解析】

由三視圖知該幾何體是一個圓柱與一個半球的四分之三的組合,利用球體體積公式、圓柱體積公式計算即可.【詳解】由三視圖知,該幾何體是由一個半徑為2的半球的四分之三和一個底面半徑2、高為4的圓柱組合而成,其體積為.故答案為:20.【點睛】本題考查三視圖以及幾何體體積,考查學(xué)生空間想象能力以及數(shù)學(xué)運算能力,是一道容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極大值,無極小值;(2).(3)見解析【解析】

(1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)極值的關(guān)系即可求出;(2)先求導(dǎo),再函數(shù)在區(qū)間上遞增,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值,問題得以解決;(3)取得到,取,可得,累加和根據(jù)對數(shù)的運算性和放縮法即可證明.【詳解】解:(1)當時,設(shè)函數(shù),則令,解得當時,,當時,所以在上單調(diào)遞增,在上單調(diào)遞減所以當時,函數(shù)取得極大值,即極大值為,無極小值;(2)因為,所以,因為在區(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立.當時,在區(qū)間上恒成立,當時,,設(shè),則在區(qū)間上恒成立.所以在單調(diào)遞增,則,所以,即綜上所述.(3)由(2)可知當時,函數(shù)在區(qū)間上遞增,所以,即,取,則.所以所以【點睛】此題考查了參數(shù)的取值范圍以及恒成立的問題,以及不等式的證明,構(gòu)造函數(shù)是關(guān)鍵,屬于較難題.18、(1)答案見解析.(2)答案見解析【解析】

(1)利用基本不等式可得,兩式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【詳解】(1)兩式相加得(2)由(1)知于是,.【點睛】本題考查了基本不等式的應(yīng)用,屬于基礎(chǔ)題.19、(1);(2)【解析】

(1)設(shè),根據(jù)題意可得點的軌跡方程滿足的等式,化簡即可求得動點的軌跡的方程;(2)設(shè)出切線的斜率分別為,切點,,點,則可得過點的拋物線的切線方程為,聯(lián)立拋物線方程并化簡,由相切時可得兩條切線斜率關(guān)系;由拋物線方程求得導(dǎo)函數(shù),并由導(dǎo)數(shù)的幾何意義并代入拋物線方程表示出,可求得,結(jié)合點滿足的方程可得的取值范圍,即可求得的范圍.【詳解】(1)設(shè)點,∵點到直線的距離等于,∴,化簡得,∴動點的軌跡的方程為.(2)由題意可知,的斜率都存在,分別設(shè)為,切點,,設(shè)點,過點的拋物線的切線方程為,聯(lián)立,化簡可得,∴,即,∴,.由,求得導(dǎo)函數(shù),∴,,,∴,因為點滿足,由圓的性質(zhì)可得,∴,即直線斜率的取值范圍為.【點睛】本題考查了動點軌跡方程的求法,直線與拋物線相切的性質(zhì)及應(yīng)用,導(dǎo)函數(shù)的幾何意義及應(yīng)用,點和圓位置關(guān)系求參數(shù)的取值范圍,屬于中檔題.20、(1)沒有極值點;(2)證明見解析【解析】

(1)求導(dǎo)可得,再求導(dǎo)可得,則在遞增,則,從而在遞增,即可判斷;(2)轉(zhuǎn)化問題為存在且,使,可得,由(1)可知,即,則,整理可得,則,設(shè),則可整理為,設(shè),利用導(dǎo)函數(shù)可得,即可求證.【詳解】(1)當時,,,所以在遞增,所以,所以在遞增,所以函數(shù)沒有極值點.(2)由題,,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面證明,只需證明:,令,則證,即.設(shè),那么,所以,所以,即【點睛】本題考查利用導(dǎo)函數(shù)求函數(shù)的極值點,考查利用導(dǎo)函數(shù)解決雙變量問題,考查運算能力與推理論證能力.21、(Ⅰ)證明見詳解;(Ⅱ).【解析】

(Ⅰ)取中點為,根據(jù)幾何關(guān)系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標原點,建立空間直角坐標系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】(Ⅰ)取的中點,連接,.如下圖所示:因為,分別是線段和的中點,所以是梯形的中位線,所以.又,所以.因為,,所以四邊形為平行四邊形,所以.所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論