版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ASurveyonHuman-CentricLLMs
JINGYIWANG*,TsinghuaUniversity,China
arXiv:2411.14491v2[cs.CL]26Nov2024
NICHOLASSUKIENNIK*,TsinghuaUniversity,ChinaTONGLI,TsinghuaUniversity,China
WEIKANGSU,TsinghuaUniversity,China
QIANYUEHAO,TsinghuaUniversity,ChinaJINGBOXU,TsinghuaUniversity,China
ZIHANHUANG,TsinghuaUniversity,ChinaFENGLIXU,TsinghuaUniversity,China
YONGLI,TsinghuaUniversity,China
Therapidevolutionoflargelanguagemodels(LLMs)andtheircapacitytosimulatehumancognitionandbehaviorhasgivenrisetoLLM-basedframeworksandtoolsthatareevaluatedandappliedbasedontheirabilitytoperformtaskstraditionallyperformedbyhumans,namelythoseinvolvingcognition,decision-making,andsocialinteraction.Thissurveyprovidesacomprehensiveexaminationofsuchhuman-centricLLMcapabilities,focusingontheirperformanceinbothindividualtasks(whereanLLMactsasastand-inforasinglehuman)andcollectivetasks(wheremultipleLLMscoordinatetomimicgroupdynamics).WefirstevaluateLLMcompetenciesacrosskeyareasincludingreasoning,perception,andsocialcognition,comparingtheirabilitiestohuman-likeskills.Then,weexplorereal-worldapplicationsofLLMsinhuman-centricdomainssuchasbehavioralscience,politicalscience,andsociology,assessingtheireffectivenessinreplicatinghumanbehaviorsandinteractions.Finally,weidentifychallengesandfutureresearchdirections,suchasimprovingLLMadaptability,emotionalintelligence,andculturalsensitivity,whileaddressinginherentbiasesandenhancingframeworksforhuman-AIcollaboration.ThissurveyaimstoprovideafoundationalunderstandingofLLMsfromahuman-centricperspective,offeringinsightsintotheircurrentcapabilitiesandpotentialforfuturedevelopment.
AdditionalKeyWordsandPhrases:LargeLanguageModels,Human-CenteredComputing.
1INTRODUCTION
Aslargelanguagemodels(LLMs)
[1,
2],suchasOpenAI’sGPTfamily
[3,
4]andMeta’sLLaMA
[5,
6],continuetoevolve,theirabilitytosimulate,analyze,andinfluencehumanbehavioris
growingatanunprecedentedrate.Thesemodelscannowprocessandgeneratehuman-liketextandperformcognitivetasksatlevelscomparabletohumansinmanysituations,providingnewtoolsforunderstandinghumancognition,decision-making,andsocialdynamics.
Assuch,thissurveyaimstoprovideacomprehensiveevaluationofLLMsfromahuman-centricperspective,focusingontheirabilitytosimulate,complement,andenhancehumancognitionandbehavior,bothonanindividualandcollectivelevel.WhileLLMshavetraditionallybeenrootedincomputerscienceandengineering
[7,
8],theirincreasingsophisticationinreplicatinghuman-like
reasoning,decision-making,andsocialinteractionshasexpandedtheiruseintodomainswherehumansarethefocalpoint.Thishasallowedresearcherstoaddressquestionsthatwereoncetoointricateorabstractforcomputationalanalysis.Forexample,inpoliticalscience,LLMsareusedtoanalyzepoliticaldiscourse,detectbiases,andmodelelectionoutcomes
[9];insociology,they
assistinunderstandingsocialmediaconversations,publicsentiment,andgroupbehaviors
[10];
Authors’addresses:JingYiWang*,TsinghuaUniversity,Beijing,China,jy-w22@;NicholasSukiennik*,TsinghuaUniversity,Beijing,China,sukiennikn10@;TongLi,TsinghuaUniversity,Beijing,China,tongli@;WeikangSu,TsinghuaUniversity,Beijing,China;QianyueHao,TsinghuaUniversity,Beijing,China;JingboXu,TsinghuaUniversity,Beijing,China;ZihanHuang,TsinghuaUniversity,Beijing,China;FengliXu,TsinghuaUniversity,Beijing,China;YongLi,TsinghuaUniversity,Beijing,China,liyong07@.
J.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
2Wangetal.
andinpsychology,theyhelpmodelhumancognitionanddecision-making
[11]
.LLMshavealsorevolutionizedlinguisticsbyenablinglarge-scaleanalysisoflanguage,fromsyntaxandsemanticstopragmatics
[12],andineconomics,theyallowformodelingcomplexinteractionsbetweenpolicies
andsocietaloutcomes
[13]
.
Tostructurethisinvestigation,thesurveyisdividedintotwomainsections.First,weevaluatehuman-centricLLMs,focusingontheircognitive,perceptual,social,andculturalcompetencies.ThissectionexamineshowLLMsperformtaskscommonlyassociatedwithhumancognition,suchasreasoning,perception,emotionalawareness,andsocialunderstanding.Weassesstheirstrengthsinstructuredreasoning,patternrecognition,andcreativity,whileidentifyingtheirlimitationsinareassuchasreal-timelearning,empathy,andhandlingcomplex,multi-steplogic.BybenchmarkingLLMperformanceagainsthumanstandards,wehighlightareaswhereLLMsexcelandwherefurtherimprovementsareneeded.
Second,weexploreLLMsinhuman-centricapplieddomains,whereLLMsareusedinreal-worldscenariosthattraditionallyrequirehumaninput.Thissectionisdividedintostudiesfocusingonindividualandcollectiveapplications,whereindividual-focusedstudiesinvolveanLLMperformingtaskstypicallydonebyasinglehuman,suchasdecision-making,problem-solving,orcontentcreation,andcollective-focusedstudiesexplorehowmultipleLLMscanworktogethertosimu-lategroupbehaviors,interactions,orcollaborativetasks,offeringinsightsintosocialdynamics,organizationalbehavior,andmulti-agentcoordination.Inbothcontexts,weexaminethemethodsemployedsuchasbasicprompting,multi-agentprompting,andfine-tuning,alongwiththetheoret-icalframeworksthatguidetheseapplications,includinggametheory,sociallearningtheory,andtheoryofmind,etc.
Ultimately,thissurveyseekstoprovideadetailedunderstandingofhowLLMscanbetteralignwithhumanbehaviorsandsocialcontexts,identifyingboththeirstrengthsandareasforimprovement.Figure
1
providesanoverviewofthisframework,categorizingLLMcapabilitiesintoindividualskills,suchascognition,perception,analysis,andexecutivefunctioning,andcollectiveskillslikesocialabilities,andhighlightingtheircapabilitiesinapplyingtostudiesacrossindividualdomainslikebehavioralscience,psychology,andlinguistics,andcollectivedomainsincludingpoliticalscience,economics,andsociology.Inclassifyingresearchworkswiththisframework,weofferinsightsintohowLLMscanbemademoreeffective,ethical,andrealistictoolsforresearchandpracticalapplications,whetherinindividualorcollectivehuman-centricsettings.
Themaincontributionsofthispapercanbesummarizedasfollows.
?Weprovideanin-depthevaluationofLLMcapabilitiesinhuman-centrictasks,focusingontheircognitive,perceptual,andsocialcompetencies,andcomparingtheirperformancetohuman-likereasoning,decision-making,andemotionalunderstanding.
?WeexploreLLM’scapabilitiesinhuman-centricdomains,namelyfocusingonreal-worldapplicationsinindividualandcollectivecontexts,assessingtheirabilitytoreplicatehumanbehaviorsinfieldssuchasbehavioralscience,politicalscience,economics,andsociology,bothassingle-agentmodelsandinmulti-agentsystems.
?Weidentifykeychallengesandfutureresearchdirections,includingimprovingLLMs’real-worldadaptability,emotionalintelligence,andculturalsensitivity,whileaddressingbiasesanddevelopingmoreadvancedframeworksforhuman-AIcollaboration.
Thepaperisorganizedasfollows:Section2providesanoverviewofAI-empoweredhuman-centricstudiesandLLMs,whileSection3evaluatesLLMcompetenciesacrosscognitive,perceptual,analytical,executive,andsocialskills.Section4discusseshowLLMscanbeappliedinavarietyofinterdisciplinaryscenariostobothenhanceLLMdevelopmentandassistinhuman-centeredtasks.
Section5exploresopenchallengesandoutlinesfuturedirectionsforadvancingLLMs.SectionJ.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
ASurveyonHuman-CentricLLMs3
Individual
Collective
Domains
Skills
Cognition
LLM
BehavioralScience
ExecutiveFunction
PoliticalScience
Psychology
Linguistics
Perception
Sociability
Sociology
Economics
Analysis
Fig.1.OurframeworkdepictshowLLMsareevaluatedonfoundationalhuman-likeskills,dividedintoindi-vidual(e.g.,cognition,perception,analysis,executivefunctioning)andcollective(e.g.,sociability)levels,andappliedwithinvariousfieldsofstudysimilarlycategorizedasindividual(e.g.,BehavioralScience,Psychology,Linguistics)andcollective(e.g.,PoliticalScience,Economics,Sociology)domains.
6summarizeskeyinsightsandemphasizestheimportanceofinterdisciplinarycollaborationtoenhanceLLMs’understandingofhumanbehavior.
2OVERVIEW
2.1Human-CentricArtificalIntelligence
2.1.1TraditionalAIApproachesinHuman-CentricStudies.TheapplicationofAIinvarioushuman-centeredfieldshasundergonealongprogression,nowreachingapinnaclewiththeriseofgenerativemodels,withAImethodstobeingusedinvestigatevarioushumanphenomena.however,despitetheirrelativenaivetycomparedtoLLMs,thosetraditionalmethodshavenonethelessenabledresearcherstoaddresscomplexsocialphenomenathroughcomputation.
Foralmostaslongasithasbeeninvestigated,AIhasbeenusedinareasthatarehighlyim-pactfulonsociety
[14]
.SincethenresearchershaveevaluatedthemanywaysinwhichAIcouldemulatehumanbehaviorandthoughtprocession,forexampleincognition
[15],perception
[16],
andexecutivefunction
[17]
.Morerecently,though,withtheriseofthewebandsocialmedia,AI’susescomeclosertoourday-to-daylives.Forexample,inpoliticalcommunicationresearch,thedetectionofpoliticalbiasinnewsarticleshasemergedasacriticalareaofstudy,particularlygiventheincreasingpolarizationinmediaandonlinespaces.Traditionalmethodsforpredictingpoliticalideology,basedonstatisticalmodelingandnetworkanalysis,havebecomeanurgenttaskduetothevastamountofcontentproduceddaily.Forinstance,researchby
[18]employednetwork
analysistoestimateideologicalpreferencesofsocialmediausers.Moreover,techniquesliketopicmodelingandcontentanalysishavebeenwidelyusedtoidentifybiasandmisinformationinnewsarticlesusingdata-miningmethods
[19,
20],highlightingtheuseoftraditionalAItechniquesin
understandingpoliticaldiscourse.Otherworkstackledthetaskofstancedetectionusingmethods
likerecursiveneuralnetworks[21]andclusteringalgorithms[22].Furthermore,Dezfoulietal.
[23]
exploreadversarialvulnerabilitiesindecision-makingmodels,whichiscrucialwhenconsideringJ.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
4Wangetal.
therobustnessoftraditionalbiasdetectionsystemsunderadversarialconditions.Furthermore,Dafoeetal.
[24]emphasizetheimportanceofsystemsdesignedtonavigatesocialenvironments,
suchaspoliticaldiscourse,usingmoreestablishedmulti-agentsystemsandgametheoryframe-works.Meanwhile,machineunderstandingofhumanpreferenceshasalsobeenusedtooptimizethelearningofrewardfunctionsinreinforcementlearning
[25],showingusthatAImethodsnot
onlyhelpusexplainhumanbehavior,butcanbenefitbyunderstandingthem,highlightingtheco-evolutionarynatureofadvancementsinbothAItechniquesandhuman-centricstudies.
Overall,thevastbodyofAI-empoweredhuman-centricstudiespointtotheburgeoningpotentialofusingmoreadvancedcomputationalmethods,suchasLLMs,tobothunderstandandbettersimulatehumanbehaviorandreasoningprocesses.LLMscanpresentnewopportunitiesinthefieldbysimulatinghumanbehaviorsinareaswherereal-worlddataisscarce,aswellasfacilitateinquiryintolawsanddynamicsofhumanbehaviorbasedonLLMreplicability.
2.1.2AParadigmShiftfromTraditionalAItoLLMs.TheriseofLLMshastransformednaturallanguageprocessing(NLP)andartificialintelligenceingeneralthroughkeybreakthroughsinmodelarchitecture,scale,andcapabilities.EarlymodelslikeWord2VecandGloVeusedwordembeddings,buttheintroductionoftheTransformerin2017
[26],withitsself-attentionmechanism,enabled
deepercontextualunderstandingandmarkedaturningpoint.OpenAI’sGPTseries,beginningin2018withGPT
[3],capitalizedonthis,culminatinginGPT-3
[27]andGPT-4
[28],whichdemon
-stratedunprecedentedcapabilitiesinreasoning,textgeneration,andmultimodaltasks.Meanwhile,Google’sPaLM2
[29]advancedmultilingualismandefficiency,andopen-sourcemodelslikeFalcon
[30]andBaidu’sERNIEBot
[31]broadenedaccessandspecialization
.ThesedevelopmentsreflectthegrowingimpactofLLMsacrossdiversedomains,frominterdisciplinaryresearchtoethicalAIapplications.
TherapidadoptionofLLMsacrossacademicdisciplineshasledtovaryingpredictionsaboutwhetherthesesystemswilleventuallymatchhumancognitiveabilities.WhilesomeexpertsforeseeAIachievinghuman-likegeneralintelligenceinthenearfuture,othersremainmorecautious,doubtingwhetherAIcanfullyreplicatethecomplex,abstractreasoningandcreativitythatdefinehumancognition
[32]
.Despitethesedifferingviewpoints,AIisalreadyasignificantforceineverydaylife,influencingdecision-makingandinformationprocessingacrossnumerousdomains.However,akeydistinctionremains:humancognitionisdrivenbyforward-thinking,theory-basedreasoning,whileAIoperatesonpatternsderivedfromvastdatasets,oftenrelyingonprobabilityandpastdata
[33].ThisdifferenceunderscoresthecomplementarynatureofhumanandAIsystems,
witheachexcellingindistinctaspectsofcognitiveprocessing.
Unlikehumanintelligence,LLMsoperatewithoutinherentgoals,values,oremotionalexperi-ences.Humancognition,drivenbysurvival,socialinteraction,andcreativity,isdeeplyconnectedtoourphysicalandsocialenvironments.EvenembodiedAI,whilecapableofinteractingwithitssurroundings,lacksthenuanced,purpose-drivenintelligencethatdefineshumanthought.Incontrast,LLMsgenerateresponsesbasedonprobabilisticmodelsderivedfromlargedatasets,with-outthelivedexperiencesthatinformhumandecision-making.ThoughLLMscansimulatecertainhuman-likebehaviors,theystillfallshortoftheembodiedunderstandinghumanspossess.
ThesedistinctionsraisecriticalquestionsaboutthelimitationsandpotentialsofAI,especiallyasweconsiderthediversecapabilitiesexploredinSection
3,whichdiscussesthecapabilitiesofLLMs
includingcognitive,perceptual,social,analytical,executive,cultural,moral,andcollaborativeskills.Section
4
delvesintohowinterdisciplinaryfields,suchaspoliticalscience,economics,sociology,behavioralscience,psychology,andlinguistics,contributetoLLMdevelopment,offeringinsights
J.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
ASurveyonHuman-CentricLLMs5
intohowhumanintelligenceinformsandshapestheevolutionofartificialsystems.Thisexplo-rationemphasizestheimportanceofleveragingLLMstrengthswhilerecognizingthefundamentaldifferencesbetweenhumanandartificialcognition.
3EVALUATIONOFHUMAN-CENTRICLLMS
Toevaluatehuman-centricLLMs,weshowcaseaholisticrepresentationofLLMcompetencies,categorizedintotwodomains:individual(e.g.,cognitive,perceptual,analytical,executivefunc-tioningskills)andcollective(e.g.,socialskills),asshowninFigure
2.
ThisrepresentationincludesvariouskeyLLMskills,suchasreasoning,patternrecognition,spatialawareness,adaptability,decision-making,interpersonalcommunication,andculturalcompetency.Followingthis,Figure
3
outlinestheevaluationapproachesusedtoassessLLMs,includingbenchmarkanddatasettest-ing,human-centricevaluations,interactiveandsimulation-basedevaluations,ethicalandbiasassessments,andlastly,explainabilityandinterpretabilityevaluations.Table
1
highlightsboththestrengthsandareasforimprovementinthesedomains.Byoutliningtheseabilities,weprovideacomprehensivecomparisonofhuman-likeskills,usingbenchmarkstoassesstheirstrengthsandlimitations.Additionally,AppendixTables
2
and
3
provideacomprehensiveoverviewofkeypapers,highlightingtheircontributions,theLLMsassessed,andcomparisonstohumanperformance.Thesubsequentsectiondelvesintoeachcategory,providinganin-depthexplorationoftheskillsandbenchmarksthatdefineLLMperformanceacrossthesedomains.
cuttural
competene"
O
C入
O
Recognition
Pattern
Individual
InformationProcessing
Fig.2.OverviewofLLMCapabilitiesAcrossIndividualandCollectiveDomains.
J.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
6Wangetal.
3.1CognitiveSkills
LLMsdemonstratecognitivecompetenciesthatmirrorkeyelementsofhumanintelligence,primarilythroughreasoningandlearning.WhileLLMsshowremarkableabilityinprocessingvastamountsofinformationandgeneratingcoherentresponses,theirproficiencyvarieswhenitcomestocomplexcognitivetasks.Thesemodelsshowcaseevolvedabilitiesinstructuredreasoningandgeneralizationbutencounterchallengeswhenfacedwithintricatelogicorlearningfromreal-timeinteractions.ThissectionexploresthestrengthsandlimitationsofLLMsinreasoningandlearning,highlightingtheirprogressandareasthatrequirefurtheradvancement.
3.1.1Reasoning.Logicalreasoning,acoreelementofhumancognitionandessentialfordailyfunctioning,consistsofvarioustypesofreasoning,includingdeductive,inductive,andcausalrea-soning,eachcontributingtohowweprocessinformationandmakedecisions.Deductivereasoningappliesgeneralprinciplestoobtainspecificconclusions,whileinductivereasoningdrawsgeneral-izationsfromspecificobservations
[34],andcausalreasoninghelpstounderstandcause-and-effect
relationships
[35,
36]
.
SeveralbenchmarkdatasetshavebeendevelopedtoassessthesereasoningcapabilitiesinLLMs.Fordeductivereasoning,theLogiQA2.0dataset
[37]isanotableresource,focusingonfivetypes
ofreasoning,includingcategorical,necessaryconditional,sufficientconditional,conjunctive,anddisjunctivereasoning.PrOntoQA
[38]alsoevaluatesdeductivereasoningthroughfirst-orderlogic
taskswhereLLMsderivespecificconclusionsfromlogicalpremises.Forinductivereasoning,CommonsenseQA2.0
[39]requiresgeneralizationfromeverydayfactsandcommonsenseknowl
-edge,whereastheCreakdataset
[40]furthertestsLLMs’abilitytogeneralizefromcommonsense
knowledgetoidentifyinconsistencies.Inturn,causalreasoningisassessedusingCausalBench
[41],
whichevaluatesLLMs’abilitytoreasonaboutcause-and-effectrelationshipsacrossdiversedo-mains.ContextHub
[42],ontheotherhand,servesasanotherbenchmarkfocusingonLLMs’causal
reasoninginbothabstractandcontextualizedtasks.AdditionaldatasetslikeGSM8K
[43]and
BIG-Bench-Hard
[44]arefurthermoreemployedformathematicalreasoningandevaluatingLLM
performanceacrossvariousreasoningdomains,respectively.
AnalyzingLLMperformancewiththesedatasetshasrevealedsignificantinsightsintotheirreasoningabilitiesandlimitations.Fordeductivereasoning,althoughLLMslikeGPT-3havemadeprogress,theiraccuracyremainsat68.65%intasksinvolvinglogicalinference,whichissignificantlybelowthe90%humanbenchmark
[37]
.Thisgapindicatesongoingchallengesinmasteringcomplexlogicalstructures,especiallywhenmultiplelogicalstepsorintricatereasoningprocessesarerequired.LLMslikeGPT-3.5,PaLM,andLLaMAperformwellonsimplerdeductivereasoningtasksbutstrugglewithmorecomplexscenariosthatinvolvechainingmultiplelogicalpremisestogether
[45]
.Forinductivereasoning,ontheotherhand,GPT-4showsimprovementsinruleapplicationwithupto99.5%partialaccuracy
[46],yetstruggleswithlargerproblemsandminimal
examples.EvenwithChain-of-Thought(CoT)prompting,GPT-4andDavincifacedifficultiesinrulevalidationandintegratingcomplexrules,withDavinci’saccuracydecliningto51%innuancedtasks
[47]
.Inaddition,Hanetal.
[47]evaluateGPT-3.5andGPT-4onpropertyinductiontasks,
highlightingthatwhileGPT-4morecloselyalignswithhumanreasoningpatterns,theystillstruggletofullycapturepremisenon-monotonicity,acriticalelementofhumancognitiveprocessing.
CausalreasoningremainsasignificantchallengeforLLMslikeGPT-4andDavinci,asitrequiresadeepunderstandingofcause-and-effectacrossvariouscontexts.Althoughthesemodelsshowreasonableproficiencyinmathematicalcausaltasks,theCausalBenchbenchmarkhighlightstheirstruggleswithmorecomplextext-basedandcoding-relatedcausalproblems
[41].Interpretingcausal
structuresinnarrativesorcodesnippetsoftengoesbeyondsimpledatacorrelations,demanding
robustreasoningtoavoidproducingmisleadingoutputs.EvenwhenGPT-4initiallyperformswell,J.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
ASurveyonHuman-CentricLLMs7
Interactive&
Simulation-BasedEvaluations
.Single-AgentSimulations.Multi-AgentSimulations.Task-OrientedDialogues
Human-CentricEvaluations
.ExpertEvaluations.Crowdsourced
Evaluations
.Human-in-the-Loop
Testing
Ethical&BiasAssessments
.BiasDetection
.FairnessMetrics
.EthicalCompliance
Benchmark&
DatasetTesting
.Standardized
Benchmarks
.CustomBenchmarks.PerformanceMetrics
Explainability&Interpretability
.TransparencyofReasoning
.UserInterpretability
.TechnicalInterpretability
LLM
Evaluations
Fig.3.OverviewofLLMevaluations.
itsreasoningcapabilitiesfrequentlyweakenwhenfacedwithflawedorconflictingarguments,raisingconcernsaboutitsconsistencyincomplexscenarios
[48]
.
TheContextHubbenchmarkisdevelopedtoassessLLMslikeGPT-4,PaLM,andLLaMAinhandlingbothabstractandcontextualizedlogicalproblems
[42]
.ContextHubfocusesonthechallengesthesemodelsencounterwhentransitioningfromsimplelogictaskstonuanced,real-worldreasoning.Whilemodelsperformwellwithstraightforwardproblems,theyoftenstruggletogeneralizeincontext-richscenariosrequiringdeeperinterpretativeskills.AdditionaldatasetslikeGSM8Kemphasizedeductivereasoning,andBIG-Bench-Hardevaluatesmulti-stepreasoning,factualknowledge,andcommonsenseunderstanding
[43,
44]
.Together,thesebenchmarksrevealcriticalinsightsintothestrengthsandlimitationsofmodelslikeGPT-4andDavinci,pinpointingareasthatneedimprovementforhandlingcomplex,real-worldreasoningtasks.
Overall,thesebenchmarkdatasetsprovideacomprehensiveevaluationframeworkforassessingLLMs’reasoningcapabilities,revealingboththeiradvancementsandlimitations.WhileLLMshaveshownprogressinhandlingspecificreasoningtasks,theycontinuetofacesignificantchallengesinmulti-steplogic,contextualproblem-solving,andgeneralizingtheirreasoningabilitiesacrossdiversedomains.
3.1.2Learning.LLMs’learningabilityencompassestheircapacitytoadapt,generalize,andimproveperformancebasedonpre-existingtrainingdataandinteractionswithusersorenvironments.Unliketraditionallearningmodels,LLMsdonotupdatetheirparametersduringinference.Instead,theyrelyonpre-trainedknowledgetoperformfew-shotorzero-shottasks,highlightingtheirgeneralizationcapabilities.However,thiscomeswithsignificantlimitationswhenfacedwithevolving,real-worlddata.
RecenteffortshaveaimedatimprovingLLMadaptabilitythroughvariousstrategies.Forinstance,theRLwithGuidedFeedback(RLGF)framework
[49]optimizeslearningfromfeedback,showing
thatguidedstrategiescansignificantlyimprovetextgenerationindynamicconditions.Similarly,error-drivenlearningapproaches,likeLEMA(LearningfromMistAKes)
[50],allowmodelslike
GPT-4torefinereasoningbyidentifyingandcorrectingerrors.Theseapproacheshighlightthepotentialofleveragingfeedbackanderrorcorrectiontoboostadaptability,yettheystillrelyonstaticdataatinference.
J.ACM,Vol.V,No.N,Article.Publicationdate:November2024.
8Wangetal.
Analysis
Cognition
Perception
Sociability
High
accuracyininformation
retrieval
Structuredmetadata-based
queries
Highvolumeofideasin
structuredtasks
Nuancedemotionalregulation
ExecutiveFunction
Cognition
Real-world,dynamic
challengeadaptation
Entity-basedreasoning
with
structureddatasets
Abstractlogic
reasoninginstructured
contexts
Contextualcue-basedreasoning
Abstractcommon-sense
reasoning
Contextuallogical
reasoning
Contradictorytaskhandling
Multi-step
reasoningwithreal-world
application
Structured,predefinedtask
handling
Context-specificempathy
Complex
Perception
ExecutiveFunction
Dynamicplanning
Real-time
adjustments
Controlledvirtual
environ-
ments
understanding
Socialcontextnavigation
mentalstate
Sociability
Analysis
Basic
empathytasks
Falsebelief
andindirectcue
recognition
Moreoriginal,dive
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合模機項目安全風險評價報告
- 無源液封水表行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 大學護理畢業(yè)生自我鑒定5篇
- 關(guān)于幼師自我鑒定模板錦集9篇
- 私人借款協(xié)議書
- 綜合執(zhí)法網(wǎng)絡(luò)課程設(shè)計
- 測量專業(yè)實習報告范文七篇
- 艱苦的軍訓心得體會600字
- 旅游管理實習心得體會8篇
- 文員類實習報告模板集合六篇
- 花藝師年度工作總結(jié)
- 新目標漢語口語課本2課件-第2單元
- 二手車買賣合同(標準版范本)
- 新產(chǎn)品的試制與導入
- 聚酰胺酰亞胺實驗報告
- 污水處理廠污泥處理處置投標方案
- 智能包裝設(shè)計智慧樹知到課后章節(jié)答案2023年下湖南工業(yè)大學
- 抖音快手短視頻創(chuàng)業(yè)項目融資商業(yè)計劃書模板(完整版)
- 上海市交大二附中2024屆數(shù)學七年級第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析
- 豐田工作方法精髓-問題解決法(八步法)課件
- 自考《獸醫(yī)法規(guī)》考前精練題庫(300題)
評論
0/150
提交評論