版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆陜西省西安市秦漢中學(xué)高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度2.已知冪函數(shù)的圖象過點,且,,,則,,的大小關(guān)系為()A. B. C. D.3.如圖所示,三國時代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲500顆米粒(米粒大小忽略不計,?。?,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.1084.若,則的值為()A. B. C. D.5.甲、乙、丙、丁四位同學(xué)高考之后計劃去三個不同社區(qū)進(jìn)行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.56.已知隨機(jī)變量滿足,,.若,則()A., B.,C., D.,7.拋物線的焦點為,點是上一點,,則()A. B. C. D.8.已知復(fù)數(shù),其中,,是虛數(shù)單位,則()A. B. C. D.9.已知函數(shù),若,則的值等于()A. B. C. D.10.曲線在點處的切線方程為()A. B. C. D.11.已知復(fù)數(shù),則的虛部是()A. B. C. D.112.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.14.從集合中隨機(jī)取一個元素,記為,從集合中隨機(jī)取一個元素,記為,則的概率為_______.15.記等差數(shù)列和的前項和分別為和,若,則______.16.的展開式中二項式系數(shù)最大的項的系數(shù)為_________(用數(shù)字作答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,焦點在軸上的橢圓與焦點在軸上的橢圓都過點,中心都在坐標(biāo)原點,且橢圓與的離心率均為.(Ⅰ)求橢圓與橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過點M的互相垂直的兩直線分別與,交于點A,B(點A、B不同于點M),當(dāng)?shù)拿娣e取最大值時,求兩直線MA,MB斜率的比值.18.(12分)已知函數(shù)()(1)函數(shù)在點處的切線方程為,求函數(shù)的極值;(2)當(dāng)時,對于任意,當(dāng)時,不等式恒成立,求出實數(shù)的取值范圍.19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求和的直角坐標(biāo)方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離.20.(12分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當(dāng)時均有?若存在,求出所有的值;若不存在,請說明理由.21.(12分)已知函數(shù).(1)若是的極值點,求的極大值;(2)求實數(shù)的范圍,使得恒成立.22.(10分)如圖1,與是處在同-個平面內(nèi)的兩個全等的直角三角形,,,連接是邊上一點,過作,交于點,沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設(shè)若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)函數(shù)圖像平移原則,即可容易求得結(jié)果.【詳解】因為,故要得到,只需將向左平移個單位長度.故選:A.【點睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎(chǔ)題.2、A【解析】
根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.3、B【解析】
根據(jù)幾何概型的概率公式求出對應(yīng)面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,
故選:B.【點睛】本題主要考查幾何概型的概率的應(yīng)用,求出對應(yīng)的面積之比是解決本題的關(guān)鍵.4、C【解析】
根據(jù),再根據(jù)二項式的通項公式進(jìn)行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應(yīng)用,考查了二項式展開式通項公式的應(yīng)用,考查了數(shù)學(xué)運算能力5、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(丁);A(甲,乙)B(?。〤(丙);A(甲,丙)B(?。〤(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.6、B【解析】
根據(jù)二項分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因為隨機(jī)變量滿足,,.所以服從二項分布,由二項分布的性質(zhì)可得:,因為,所以,由二次函數(shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【點睛】本題主要考查二項分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.7、B【解析】
根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.8、D【解析】試題分析:由,得,則,故選D.考點:1、復(fù)數(shù)的運算;2、復(fù)數(shù)的模.9、B【解析】
由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【點睛】函數(shù)奇偶性的運用即得結(jié)果,小記,定義域關(guān)于原點對稱時有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)10、A【解析】
將點代入解析式確定參數(shù)值,結(jié)合導(dǎo)數(shù)的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當(dāng)時,代入可得,所以切點坐標(biāo)為,求得導(dǎo)函數(shù)可得,由導(dǎo)數(shù)幾何意義可知,由點斜式可得切線方程為,即,故選:A.【點睛】本題考查了導(dǎo)數(shù)的幾何意義,在曲線上一點的切線方程求法,屬于基礎(chǔ)題.11、C【解析】
化簡復(fù)數(shù),分子分母同時乘以,進(jìn)而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復(fù)數(shù)的乘法、除法運算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.12、D【解析】
通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應(yīng)用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據(jù)公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.【點睛】本題考查古典概型的概率的計算,考查學(xué)生分析問題的能力,難度容易.14、【解析】
先求出隨機(jī)抽取a,b的所有事件數(shù),再求出滿足的事件數(shù),根據(jù)古典概型公式求出結(jié)果.【詳解】解:從集合中隨機(jī)取一個元素,記為,從集合中隨機(jī)取一個元素,記為,則的事件數(shù)為9個,即為,,,其中滿足的有,,,共有8個,故的概率為.【點睛】本題考查了古典概型的計算,解題的關(guān)鍵是準(zhǔn)確列舉出所有事件數(shù).15、【解析】
結(jié)合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數(shù)列的前項和公式及等差中項的應(yīng)用,考查了學(xué)生的計算求解能力,屬于基礎(chǔ)題.16、5670【解析】
根據(jù)二項式展開的通項,可得二項式系數(shù)的最大項,可求得其系數(shù).【詳解】二項展開式一共有項,所以由二項式系數(shù)的性質(zhì)可知二項式系數(shù)最大的項為第5項,系數(shù)為.故答案為:5670【點睛】本題考查了二項式定理展開式的應(yīng)用,由通項公式求二項式系數(shù),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】分析:(1)根據(jù)題的條件,得到對應(yīng)的橢圓的上頂點,即可以求得橢圓中相應(yīng)的參數(shù),結(jié)合橢圓的離心率的大小,求得相應(yīng)的參數(shù),從而求得橢圓的方程;(2)設(shè)出一條直線的方程,與橢圓的方程聯(lián)立,消元,利用求根公式求得對應(yīng)點的坐標(biāo),進(jìn)一步求得向量的坐標(biāo),將S表示為關(guān)于k的函數(shù)關(guān)系,從眼角函數(shù)的角度去求最值,從而求得結(jié)果.詳解:(Ⅰ)依題意得對:,,得:;同理:.(Ⅱ)設(shè)直線的斜率分別為,則MA:,與橢圓方程聯(lián)立得:,得,得,,所以同理可得.所以,從而可以求得因為,所以,不妨設(shè),所以當(dāng)最大時,,此時兩直線MA,MB斜率的比值.點睛:該題考查的是有關(guān)橢圓與直線的綜合題,在解題的過程中,注意橢圓的對稱性,以及其特殊性,與y軸的交點即為橢圓的上頂點,結(jié)合橢圓焦點所在軸,得到相應(yīng)的參數(shù)的值,再者就是應(yīng)用離心率的大小找參數(shù)之間的關(guān)系,在研究直線與橢圓相交的問題時,首先設(shè)出直線的方程,與橢圓的方程聯(lián)立,求得結(jié)果,注意從函數(shù)的角度研究問題.18、(1)極小值為,極大值為.(2)【解析】
(1)根據(jù)斜線的斜率即可求得參數(shù),再對函數(shù)求導(dǎo),即可求得函數(shù)的極值;(2)根據(jù)題意,對目標(biāo)式進(jìn)行變形,構(gòu)造函數(shù),根據(jù)是單調(diào)減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結(jié)果.【詳解】(1)函數(shù)的定義域為,,,,可知,,解得,,可知在,時,,函數(shù)單調(diào)遞增,在時,,函數(shù)單調(diào)遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調(diào)遞減,,可得,設(shè),,可知函數(shù)在單調(diào)遞減,,可知,可知參數(shù)的取值范圍為.【點睛】本題考查由切線的斜率求參數(shù)的值,以及對具體函數(shù)極值的求解,涉及構(gòu)造函數(shù)法,以及利用導(dǎo)數(shù)求函數(shù)的值域;第二問的難點在于對目標(biāo)式的變形,屬綜合性中檔題.19、(1)..(2)最大距離為.【解析】
(1)直接利用極坐標(biāo)方程和參數(shù)方程的公式計算得到答案.(2)曲線的參數(shù)方程為,設(shè),計算點到直線的距離公式得到答案.【詳解】(1)由,得,則曲線的直角坐標(biāo)方程為,即.直線的直角坐標(biāo)方程為.(2)可知曲線的參數(shù)方程為(為參數(shù)),設(shè),,則到直線的距離為,所以線段的中點到直線的最大距離為.【點睛】本題考查了極坐標(biāo)方程,參數(shù)方程,距離的最值問題,意在考查學(xué)生的計算能力.20、(1);(2).【解析】
(1)對求導(dǎo),對參數(shù)進(jìn)行分類討論,根據(jù)函數(shù)單調(diào)性即可求得.(2)先根據(jù),得,再根據(jù)零點解得,轉(zhuǎn)化不等式得,令,化簡得,因此,,最后根據(jù)導(dǎo)數(shù)研究對應(yīng)函數(shù)單調(diào)性,確定對應(yīng)函數(shù)最值,即得取值集合.【詳解】(1),當(dāng)時,對恒成立,與題意不符,當(dāng),,∴時,即函數(shù)在單調(diào)遞增,在單調(diào)遞減,∵和時均有,∴,解得:,綜上可知:的取值范圍;(2)由(1)可知,則,由的任意性及知,,且,∴,故,又∵,令,則,且恒成立,令,而,∴時,時,∴,令,若,則時,,即函數(shù)在單調(diào)遞減,∴,與不符;若,則時,,即函數(shù)在單調(diào)遞減,∴,與式不符;若,解得,此時恒成立,,即函數(shù)在單調(diào)遞增,又,∴時,;時,符合式,綜上,存在唯一實數(shù)符合題意.【點睛】利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.21、(1).(2)【解析】
(1)先對函數(shù)求導(dǎo),結(jié)合極值存在的條件可求t,然后結(jié)合導(dǎo)數(shù)可研究函數(shù)的單調(diào)性,進(jìn)而可求極大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,構(gòu)造函數(shù)g(x)=x2+(t﹣2)x﹣tlnx,結(jié)合導(dǎo)數(shù)及函數(shù)的性質(zhì)可求.【詳解】(1),x>0,由題意可得,0,解可得t=﹣4,∴,易得,當(dāng)x>2,0<x<1時,f′(x)>0,函數(shù)單調(diào)遞增,當(dāng)1<x<2時,f′(x)<0,函數(shù)單調(diào)遞減,故當(dāng)x=1時,函數(shù)取得極大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0時恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,則,(i)當(dāng)t≥0時,g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,所以g(x)min=g(1)=t﹣1≥0,解可得t≥1,(ii)當(dāng)﹣2<t<0時,g(x)在()上單調(diào)遞減,在(0,),(1,+∞)上單調(diào)遞增,此時g(1)=t﹣1<﹣1不合題意,舍去;(iii)當(dāng)t=﹣2時,g
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)陽光房設(shè)計與施工一體化協(xié)議版A版
- 專用商標(biāo)使用許可協(xié)議版B版
- 專業(yè)SaaS服務(wù)提供商協(xié)議范本(2024修訂版)版B版
- 專項咨詢與解決方案服務(wù)協(xié)議版B版
- 二零二四全新旅游服務(wù)雙向保密協(xié)議下載與體驗合同3篇
- 二零二五年度綠色能源項目補(bǔ)充合同協(xié)議書2篇
- 2025年度城市綜合體戶外廣告位及攤位聯(lián)合租賃合同4篇
- 2025年休閑娛樂場地租賃合作協(xié)議書4篇
- 2025年度綠色能源項目場地承包經(jīng)營合同范本4篇
- 二零二五年度自然人互聯(lián)網(wǎng)金融消費合同3篇
- 2025年度土地經(jīng)營權(quán)流轉(zhuǎn)合同補(bǔ)充條款范本
- 南通市2025屆高三第一次調(diào)研測試(一模)地理試卷(含答案 )
- 2025年上海市閔行區(qū)中考數(shù)學(xué)一模試卷
- 2025中國人民保險集團(tuán)校園招聘高頻重點提升(共500題)附帶答案詳解
- 0的認(rèn)識和加、減法(說課稿)-2024-2025學(xué)年一年級上冊數(shù)學(xué)人教版(2024)001
- 醫(yī)院安全生產(chǎn)治本攻堅三年行動實施方案
- 法規(guī)解讀丨2024新版《突發(fā)事件應(yīng)對法》及其應(yīng)用案例
- Python試題庫(附參考答案)
- 大斷面隧道設(shè)計技術(shù)基本原理
- 41某31層框架結(jié)構(gòu)住宅預(yù)算書工程概算表
- 成都市國土資源局關(guān)于加強(qiáng)國有建設(shè)用地土地用途變更和
評論
0/150
提交評論