版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
C280,ComputerVision
Prof.TrevorDarrell
trevor@
Lecture12:IntroductiontoRecognition;
Boosting,HOG,andBag-of-WordModels
Lastfewlectures...
?Feature-basedAlignment
-Stitchingimagestogether
-Homographies,RANSAC,Warping,Blending
-Globalalignmentofplanarmodels
?DenseMotionModels
-Localmotion/featuredisplacement
-Parametricopticflow
?Stereo/'Multi-view':Estimatingdepthwithknowninter-
camerapose
?/Structure-from-motion,:Estimationofposeand3Dstructure
-Factorizationapproaches
—Globalalignmentwith3Dpointmodels
RecognitionChallenges/
Overview
ObjectCategorization
75
一
o一
-
n
l
u
o
口
C
6
O
O
O?HowtorecognizeANYcow
H
l
o
CDJ
q
o
-
B
n
s
一
4
K.Grauman,B.Leibe
Challenges:robustness
w
M
o
lIlluminationObjectposeClutter
n
l
u
o
口
C
6
O
O
O
H
l
o
g
q
o
-OcclusionsIntra-class
BViewpoint
n
sappearance
>
Challenges:robustness
w
oK
nl
.J
u
o
口
6C
0
0
O?DetectioninCrowdedScenes
)H>Learnobjectvariability
1
0-Changesinappearance,scale,andarticulation
.9q>?Compensateforclutter,overlap,andocclusion
0
-
B
n
s
>K.Grauman,B.Leibe
Challenges:contextandhumanexperience
w
K
o
l
n
l
u
o
口
C
6
O
O
O
H
l
o
g
q
o
-
B
n
s
>
K.Grauman,B.Leibe
Challenges:contextandhumanexperience
w
K
o
nl
l
U
0
4
C
6
0
0
0H)Contextcues
ol
g
q
o
-
B
n
s
>
Imagecredit:D.Hoeim
Challenges:learningwithminimalsupervision
w
K
o
l
n
l
u
o
口
C
6
O
O
O
H
l
o
g
q
o
-
B
n
s
>
K.Grauman,B.Leibe
Thisisa
pottopod
SlidefromPietroPerona,2004ObjectRecognitionworkshop
RBuegel,I562
SlidefromPietroPerona,2004ObjectRecognitionworkshop
Roughevolutionoffocusinrecognitionresearch
量“L
76qz46
Kw
lo工久2223
Jn
.nputimage。
u0A3g7
o
口
6C
0
0
O
)H
1
0
.9q>
01980s1990stoearly2000s2000-2010...
-
B
n
s
>
Inputs/outputs/assumptions
?Whatisthegoal?
-Sayyes/noastowhetheranobjectpresentinimage
And/or:
-Determineposeofanobject,e.g.forrobottograsp
-Categorizeallobjects
-Forcedchoicefrompoolofcategories
-Boundingboxonobject
-Fullsegmentation
-Buildamodelofanobjectcategory
Today
?Scanningwindowparadigm
?GIST
?HOG
?BoostedFaceDetection
?Local-featureAlignment;fromRobertsto
Lowe...
?BOWIndexing
Nextthreelectures
?Thursday:learningobjectcategoriesfromtheweb
-LSAandLDAmodels
-Harvestingtrainingdatafromtheweb
-Exploitingimageandtext
?Tues.Oct.20th:Generativemodels
-Condensation
-ISM
-Transformed-HDPs
-MoreContext...
?Thurs.Oct.22nd:AdvancedBOWkernels
-Pyramidandspatial-pyramidmatch
-Multi-kernellearning
-Latent-partSVMmodels
Scanningwindows...
Detectionviaclassification:Mainidea
Basiccomponent:abinaryclassifier
Kw
loCar/non-car
n—?
.J
uClassifier
o
口
6C
0
0
ONoYemtcaicar.
)H
1
0
.9q>
0
-
B
n
s
>K.Grauman,B.Leibe
Detectionviaclassification:Mainidea
Ifobjectmaybeinaclutteredscene,slideawindow
aroundlookingforit.
Kw
loCar/non-car
n—?
.J
uClassifier
o
口
6C
0
0
O
)H
1
0
(Essentially,ourskindetectorwasdoingthis,witha
.9q>
0windowthatwasonepixelbig.)
-
B
n
s
>K.Grauman,B.Leibe
Detectionviaclassification:Mainidea
Fleshingoutthis
pipelineabitmore,
weneedto:
1.Obtaintrainingdata
2.Definefeatures
3.Defineclassifier
w
oKTrainingexamples
nl
.J
uuu
o
口
6C
0
0Car/non-car
OClassifier
)H
1
0Feature
.9q>^extraction.
0
-
B
n
s
>K.Grauman,B.Leibe
Detectionviaclassification:Mainidea
?Considerallsubwindowsinanimage
>Sampleatmultiplescalesandpositions(andorientations)
?Makeadecisionperwindow:
?“DoesthiscontainobjectcategoryXornot?”
75
一
o一
-
n
l
u
o
口
C
6
O
O
O
H
l
o
CDJ
q
o
-
B
n
s
一
20
K.Grauman,B.Leibe
Featureextraction:
globalappearance
w
oK
nl
.J
u
o
口
6CSimpleholisticdescriptionsofimagecontent
0
0?grayscale/colorhistogram
O
)H?vectorofpixelintensities
1
0
.9q>
0
-
B
n
s
>K.Grauman,B.Leibe
Eigenfaces:globalappearancedescription
Anearlyappearance-basedapproachtofacerecognition
Generatelow-
dimensional
I*】?國-->representation
ofappearance
75withalinear
一
一Eigenvectorscomputed
oTrainingimages
-fromcovariancematrixsubspace.
n
l
u
o
口
CProjectnew
6
Oimagesto”face
O
O
Hspace”.
l
oRecognitionvia
CDJ
q
onearestneighbors
-
B
ninfacespace
s
一
Turk&Pentland,1991
K.Grauman,B.Leibe
Featureextraction:globalappearance
?Pixel-basedrepresentationssensitivetosmallshifts
iJSBi
w
oK
nl
.J?Colororgrayscale-basedappearancedescriptioncanbe
u
osensitivetoilluminationandintra-classappearance
口
6Cvariation
0
0
Cartoonexample:
O
analbinokoala
)H
1
0
.9q>
0
-
B
n
s
>K.Grauman,B.Leibe
Gradient-basedrepresentations
?Consideredges,contours,and(oriented)intensity
gradients
一
.S,
I
O
5
1
口
6C
0
0
O
)H
L
O
G
Q
O
-
BN
S
>
K.Grauman,B.Leibe
Gradient-basedrepresentations
?Consideredges,contours,and(oriented)intensity
gradients
w
oK
nl
.J
u
o
口
6C
0
0?Summarizelocaldistributionofgradientswithhistogram
O
)HaLocallyorderless:offersinvariancetosmallshiftsandrotations
1
0>Contrast-normalization:trytocorrectforvariableillumination
.9q>
0
-
B
n
s
>K.Grauman,B.Leibe
I-
s
0
RepresentingImageStructurewith
“GIST”
Steerable
Vectorof
Globalfeatures
Oliva&Torralba(2001,2002,2006)
SlideCredit:OliviaNiir
WhatdoImagesStatisticssay
aboutDepth?
SlideCredit:Torralba,Olivia,J.HuangNiir
SceneScale
□''Thepointofviewthatanygivenobserveradoptsonaspecific
sceneisconstrainedbythevolumeofthescene."
□Howdoestheamountofcluttervaryagainstscenescaleinman-
madeenvironments?Innaturalenvironments?
■■■■
■■■■SlideCredit:Torralba,Olivia,J.HuangNiir
CategorizationofNaturalScenes
ConfusionMatrix(in%usingLayouttemplate):
Classificationofprototypicalscenes(400/category)Localorganization:
CoastCountrysideForestMountaincorrectfor92%images
(4similarimageson7K-NN)
Coast88.68.9
Countryside9.885.2
0.43.6
Mountain0.44.6
SlideCredit:OliviaNiir
o
oH
Gradient-basedrepresentations:
Histogramsoforientedgradients(HoG)
75
一
o一
-
n
l
u
o
口
C
6
OMapeachgridcellintheinput
O
O
Hwindowtoahistogramcounting
l
othegradientsperorientation.
CDJ
q
o
-Codeavailable:
B
n
shttp://pascal.inrialpes.fr/soft/olt/
一
DalalDTriggs,CVPR2005
K.Grauman,B.Leibe
Slidecredit:Dalal,Triggs,P.Barnum
Person/
Input
non-person
imageclassification
Slidecredit:Dalal,Triggs,RBarnum
NormalizeWeightedvoteContrastnormalizePerson/
Input_ComputeColledHOGsLinear
aiima&—?—?intospatial&-Aoveroverlapping——?overdetection—>non-person
imagegradientsS\M
colourorientationcellsspntialblockswindowclassification
?Testedwith
-RGB
-LAB
一Grayscale
?GammaNormalizationandCompression
一Squareroot
-Log
Slidecredit:Dalal,Triggs,RBarnum
Person/
Input
non-person
imageclassification
-101□□
centered□□
diagonal
-11
uncentered
□□H0□
1-808-1S□
cubic-Sobel
corrected
Slidecredit:Dalal,Triggs,RBarnum
NormalizeWeightedvoteContrastnormalizeColledHOGsPerson/
InputComputeLinear
gamma&->intospatial&Aoveroverlapping->overdetection>―>non-person
imagegradientsSVM
colourorientationcellsspntialblockswindowclassification
Histogramofgradient
orientations
-Orientation-Position
90
13545
1800
225315
270
-Weightedbymagnitude
Slidecredit:Dalal,Triggs,RBarnum
NormalizeWeightedvoteContrastnormalizeColledHOGsPerson/
Input_ComputeLinear
gamma&intospatial&Aoveroverlappingoverdetection―?non-person
imagegradientsSVM
colourorientationcellsspntialblockswindowclassification
R-HOGC-HOG
ft
爸
0
王
1±
RadialBins.AnsularBins
Slidecredit:Dalal,Triggs,RBarnum
Person/
Input
non-person
image
classification
R-HOGC-HOG
CellCenterBin
-H
a
o
O
王
RadialBins.AngularBins
Ll-norm:v——>v/(||v||i+£)Ll-sqrt:v-?\/v/(||v||i+6)
L2-norm:v—,+FL2-hys:L2-norm,plusclippingat.2andrcnomalizing
Slidecredit:Dalal,Triggs,RBarnum
Person/
Input
non-person
imageclassification
Slidecredit:Dalal,Triggs,RBarnum
Person/
Input
non-person
imageclassification
Slidecredit:Dalal,Triggs,RBarnum
Person/
Input
non-person
imageclassification
Slidecredit:Dalal,Triggs,RBarnum
Slidecredit:Dalal,Triggs,RBarnum
BoostedFaceDetection
withGradientFeatures
Gradient-basedrepresentations:
Rectangularfeatures
w
K
o
l
n
l
u
o
口
C
6
O
O
OComputedifferencesbetweensumsofpixelsinrectangles
H
l
o
gCapturescontrastinadjacentspatialregions,efficientto
q
ocompute
-
B
n
sEachfeatureparameterizedbyscale,position,type.
>
Viola&Jones,CVPR2001
K.Grauman,B.Leibe
ioosting
?Buildastrongclassifierbycombiningnumberof"weak
classifiers”,whichneedonlybebetterthanchance
?Sequentiallearningprocess:ateachiteration,adda
weakclassifier
?Flexibletochoiceofweaklearner
75
一
o一
->includingfastsimpleclassifiersthatalonemaybeinaccurate
n
l
u
o
口1
C?WeIIlookatFreund&Schapire'sAdaBoostalgorithm
6
O
OaEasytoimplement
O
H
l>BaselearningalgorithmforViola-Jonesfacedetector
o
CDJ
q
o
-
B
n
s
一
46
K.Grauman,B.Leibe
AdaBoost:Intuition
Considera2-dfeature
Weakspacewithpositiveand
Classifier1negativeexamples.
Eachweakclassifiersplits
w
K
othetrainingexampleswith
l
n
latleast50%accuracy.
U
0
4
CExamplesmisclassifiedby
6
0
0apreviousweaklearner
0)Haregivenmoreemphasis
1
0atfuturerounds.
,9q>
0
-
B
n
s
一FigureadaptedfromFreundandSchapire
47
K.Grauman,B.Leibe
AdaBoost:Intuition
Weights
Increased
Weak
Classifier1
?oWeak
ooClassifier2
-
,-s
0
1
n
l
u
o
C口
6
O
O
O
H
l
o
.sq>
o
-
B
n
s
一48
K.Grauman,B.Leibe
AdaBoost:Intuition
75
一
o一
-
n
l
uWeak
oclassifier3
口
C
6
O
O
OFinalclassifieris
H
lcombinationofthe
oweakclassifiers
CDJ
q
o
-
B
n
s
一
49
K.Grauman,B.Leibe
?Givenexampleimages(J;I,,(^n,?/n)where
yi=0,1fornegativeandpositiveexamplesrespec-
tively.AdaBoostAlgorithm
?Initializeweights=for仍=0,1respec-Startwith
tively,wheremandIarethenumberofnegativesanduniformweights
positivesrespectively.ontraining
?Forf=1,...,T:examples
1.Normalizetheweights.
ForTrounds
sothatwtisaprobabilitydistribution.
Evaluate
2.Foreachfeature,j,trainaclassifierhjwhich
isrestrictedtousingasinglefeature.Theweightederror
errorisevaluatedwithrespecttowt,e;=foreachfeature,
皿電(g)-yi\.pickbest.
3.Choosetheclassifier.In.withthelowesterroret.
4.Updatetheweights:
Re-weighttheexamples:
-+i,t=皿,iB;CiIncorrectlyclassified->moreweight
whereei=0ifexampleXiisclassifiedcor-Correctlyclassified->lessweight
rectly,a=1otherwise,and仇=y1七■.
?Thefinalstrongclassifieris:
Finalclassifieriscombinationofthe
刀,1a力加(/)NI£著at
'-10otherwiseweakones,weightedaccordingto
errortheyhad.
wherec\f=log+Freund&Schapire1995
Example:Facedetection
?Frontalfacesareagoodexampleofaclasswhere
globalappearancemodels+aslidingwindow
detectionapproachfitwell:
>Regular2Dstructure
>Centeroffacealmostshapedlikea“patch"/window
75
一
o一
-
n
l
u
o
口
C
6
O
O
O
H
l
o
CDJ
q
o?Nowwe'lltakeAdaBoostandseehowtheViola-
-
B
nJonesfacedetectorworks
s
一
51
K.Grauman,B.Leibe
Featureextraction
“Rectangular”filters
Featureoutputisdifference
betweenadjacentregions
75
一
o一
-
n
lEfficientlycomputable
u
owithintegralimage:any
口
Csumcanbecomputed
6
O
Oinconstanttime
O
H
l
oAvoidscalingimages9
CDJscalefeaturesdirectly
q
oforsamecost=/+(A+3+C+Z))—(A+C+/+B)
-
B
n
s
一
Viola&Jones,CVPR200152
K.Grauman,B.Leibe
Largelibraryoffilters
75
一
o一
-
n
l
u
o
口
C
6
O
O
O
H
l
oUseAdaBoostbothtoselecttheinformative
CDJ
qfeaturesandtoformtheclassifier
o
-
B
n
s
一
Viola&Jones,CVPR2001
AdaBoostforfeature+classifierselection
?Wanttoselectthesinglerectanglefeatureandthreshold
thatbestseparatespositive(faces)andnegative(non-
faces)trainingexamples,intermsofweightederror.
ftResultingweakclassifier:
a一e■o~~e一?eooo〉
T.o
l
n+1iff(x)>9
ltt
ht(x)=
Ui
0-1otherwise
4
C
6■6^0。一OOO———
0
0
:——f[(x)一Fornextround,reweightthe
0)Hexamplesaccordingtoerrors,
。1
①Outputsofapossiblechooseanotherfilter/threshold
q一rectanglefeatureon
ocombo.
-facesandnon-faces.
B
n
s
>Viola&Jones,CVPR2001
?Givenexampleimages(J;I,,(^n,?/n)where
yi=0,1fornegativeandpositiveexamplesrespec-
tively.AdaBoostAlgorithm
?Initializeweights=for仍=0,1respec-Startwith
tively,wheremandIarethenumberofnegativesanduniformweights
positivesrespectively.ontraining
?Forf=1,...,T:examples
1.Normalizetheweights.
ForTrounds
sothatwtisaprobabilitydistribution.
Evaluate
2.Foreachfeature,trainaclassifierh)which
isrestrictedtousingasinglefeature.Theweightederror
errorisevaluatedwithrespecttowt,與=foreachfeature,
皿陶(g)一詞.pickbest.
3.Choosetheclassifier,lit,withthelowesterrore.t.
4.Updatetheweights:
Re-weighttheexamples:
Wt+l,i=皿,俐"Incorrectlyclassified->moreweight
wheree/=0ifexamplexiisclassifiedcor-Correctlyclassified->lessweight
?Thefinalstrongclassifieris:
Finalclassifieriscombinationofthe
i£屋1。也(1)>}E?=i
h[x)=
0otherwiseweakones,weightedaccordingto
errortheyhad.
whereat=logJ-Freund&Schapire1995
AdaBoostforEfficientFeature
Selection
?ImageFeatures=WeakClassifiers
?Foreachroundofboosting:
-Evaluateeachrectanglefilteroneachexample
-Sortexamplesbyfiltervalues
-Selectbestthresholdforeachfilter(minerror)
?Soiledlistcanbequicklyscaimedfortheoptimalthreshold
-Selectbestfilter/thresholdcombination
-Weightonthisfeatureisasimplefunctionofen*orrate
-Reweightexamples
ViolaandJones.Robustobjectdetectionusingaboostedcascadeofsimplefeatures.CVPR2001
?Evenifthefiltersarefasttocompute,each
newimagehasalotofpossiblewindowsto
search.
?Howtomakethedetectionmoreefficient?
Cascadingclassifiersfordetection
Forefficiency,applyless
accuratebutfasterclassifiers
firsttoimmediatelydiscard
windowsthatclearlyappearto
benegative;e.g.,
w
oKaFilterforpromisingregionswithan
nl
.Jinitialinexpensiveclassifier
u
o
口aBuildachainofclassifiers,choosing
6Ccheaponeswithlowfalsenegative
0
0ratesearlyinthechain
O
)H
1
0
.9q>
0Fleuret&Geman,IJCV2001
-RowleyetaL,PAMI1998
B
n
sViola&Jones,CVPR200158
>K.Grauman,B.LeibeFigurefromViola&JonesCVPR2001
Viola-JonesFaceDetector:Summary
翻?■■可■■)■/■
?電?感所國,通??F
■*妙硒I二中
再⑥三■-
?5電???費(fèi)型IT
臥?電?即?出■?卜
wJ/KJtL,?<AJ
w
oK
nl
.J
u
o
口
C
6Non-faces
0
0
O?Trainwith5Kpositives,350Mnegatives
)H
1?Real-timedetectorusing38layercascade
0
?6061featuresinfinallayer
.9q>
0?[ImplementationavailableinOpenCV:
-
B/technology/computing/opencv/]
n
s59
>K.Grauman,B.Leibe
Viola-JonesFaceDetector:Results
Firsttwofeatures
selected
r
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度電影投資與融資合作合同律師審閱版
- 2025年度電子商務(wù)直播帶貨合作合同
- 2025年度二零二五年度試用期員工技能培訓(xùn)合同
- 二零二五年度洗浴中心資產(chǎn)包整體轉(zhuǎn)讓合同
- 二零二五年度新型液化氣儲罐租賃及能源消耗監(jiān)測服務(wù)合同
- 二零二五年度項(xiàng)目經(jīng)理聘用合同(含生物科技研發(fā))
- 二零二五年度知識產(chǎn)權(quán)合同簽訂與知識產(chǎn)權(quán)許可管理規(guī)范
- 2025年度消防安全隱患排查與整改服務(wù)合同
- 公文格式規(guī)范培訓(xùn)
- 幼兒園教育活動(dòng)設(shè)計(jì)課程
- 第2課《濟(jì)南的冬天》課件-2024-2025學(xué)年統(tǒng)編版語文七年級上冊
- 2024年水利工程高級工程師理論考試題庫(濃縮400題)
- 增強(qiáng)現(xiàn)實(shí)技術(shù)在藝術(shù)教育中的應(yīng)用
- TD/T 1060-2021 自然資源分等定級通則(正式版)
- 《創(chuàng)傷失血性休克中國急診專家共識(2023)》解讀
- 倉庫智能化建設(shè)方案
- 海外市場開拓計(jì)劃
- 供應(yīng)鏈組織架構(gòu)與職能設(shè)置
- 幼兒數(shù)學(xué)益智圖形連線題100題(含完整答案)
- 七上-動(dòng)點(diǎn)、動(dòng)角問題12道好題-解析
- 2024年九省聯(lián)考新高考 數(shù)學(xué)試卷(含答案解析)
評論
0/150
提交評論