版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
STUDY
AIASGAMECHANGER
TheNewDrivingForceoftheAutomotiveIndustry
Authors&Contactperson
Lead
AugustinFriedel
SoftwareDefinedVehiclesAugustin.Friedel@
Lead
MatthiasBorch
ArtificialIntelligenceMatthias.Borch@
ContactPerson
StephanBaier
ArtificialIntelligenceStephan.Baier@
Author
MarcusWilland
Mobility
Marcus.Willand@
Author
Dr.NilsSchaupensteiner
TransformationAdvisory
Nils.Schaupensteiner@
Author
PatrickRuhland
TransformationAdvisory
Patrick.Ruhland@
AIasGameChanger
Thestudy“AIasGameChanger“anditssummarywerepublishedby:
MHPGesellschaftfürManagement-undIT-BeratungmbH
Allrightsreserved!
Noreproduction,microfilming,storage,orprocessinginelectronicmediapermittedwithouttheconsentofthepublisher.Thecontentsofthispublicationareintendedtoinformourcustomersandbusinesspartners.Theycorrespondtothestateofknowledgeoftheauthorsatthetimeofpublication.Toresolveanyissues,pleaserefertothesourceslistedinthepublicationorcontactthedesignatedcontactpersons.Opinionarticlesreflecttheviewsoftheindividualauthors.Roundingdifferencesmayoccurinthegraphics.
3
4
Contents
Contents4
Tableoffigures6
12KeyFindings8
WelcometoChange!10
01.RevolutionandAutomotiveMarketPotential11
02.InvestmentinCompaniesWithanAIFocus15
03.PilotProjectsandImplementation19
04.AIModels,Levels,andUseCases23
4.1TheGameChanger:WhatCanBeAchievedWithAI26
4.2AutomobileManufacturersWithLowAIInvestment29
4.3AIModels:MakeorBuy?29
05.AIApplicationsAlongtheAutomotiveValueChain31
5.1AIOperationinVehiclesandintheCloud35
5.2AIMonetizationinVehicles39
5.3AddedValueofAIApplicationsinCompanies40
06.WhattheCustomerWants:TheUserPerspective47
6.1UseandUnderstandingofAIApplications49
6.2AdvantagesandDisadvantages–GenerallyandinVehicles49
6.3PurchasingDecision,TrustandWillingness
toPay51
AIasGameChanger|Contents
07.SuccessFactorsandStrategicApproach55
7.1StrategyandGoalPlanning56
7.2ThinkfromthePerspectiveoftheCustomer,nottheTechnology56
7.3OrganizationalAnchoringandOwnership58
7.4LocalDifferencesrequirelocalSetup59
7.5ReducingComplexity59
7.6Useand
MonetizationofData60
7.7ChecklistforsuccessfulImplementation61
08.Challenges,Responsibility,andRisks63
8.1CostsofTraining
andOperation64
8.2Dataand
DigitalizationasaBasis65
8.3BusinessModelsandCasesforB2CandB2B65
8.4EthicsandResponsibility67
8.5NewRisksandRegulatoryChallenges69
09.AIApplicationsintheAutomotiveIndustry:7RecommendationsforAction71
10.FurtherInformations75
LiteratureandSources76
Contact
International78
About
MHP79
5
6
Tableoffigures
Figure1:Technologysupercycles–artificialintelligenceasthenextrelevantplatformshift
(Coatue,2024)12
Figure2:AImarketsizeintheautomotivesector(PrecedenceResearch,2024)12
Figure3:TotalinvestmentsinAIcompaniesfoundedsince2001,inUSDbillion(Scheuer,2024)16
Figure4:InvestmentinAIstacklayers(Coatue,2024)17
Figure5:CompanieswithteamandbudgetforAI(Capgemini,2023)21
Figure6:InterconnectedAIconcepts24
Figure7:VisualizationofAIasapyramid25
Figure8:ClassificationofAIterms27
Figure9:TheperformanceofAImodelscomparedtohumancapabilitiesintheMMLUtest(iAsk,2024)28
Figure10:SchematicdiagramofthetrainingofAIfoundationmodelsforvehicles30
Figure11:UseofAIalongthevaluechain32
Figure12:SignificantimprovementsoffunctionsandfeaturesthroughAI33
Figure13:InterestinAIfunctionscomparedinternationally34
Figure14:Roleofon-premise,cloud,andvehicleforAImodels35
Figure15:Levelsofasoftware-definedvehicle(SDV)(Willand,Friedel,&Schaupensteiner,2023)36
Figure16:DifferentmodelsforADASandADapplicationsandfunctions37
Figure17:AI’spotentialatdifferentstagesofthevaluechain
(Capgemini,2023)40
Figure18:UseofAI-basedsolutionsbyregion41
Figure19:KeydriversbehindtheuseofAIinproduction42
7
AIasGameChanger|Tableoffigures
Figure20:Decisiveissue–fewerusersofsoftwareduetoAIorfreesoftware(Coatue,2024)43
Figure21:PossibleusesofAIinsoftwaredevelopment
(Wee2024)44
Figure22:UnderstandingofAIincars48
Figure23:AdvantagesofusingAIincars49
Figure
24:TheperceivedadvantagesanddisadvantagesofusingAI50
Figure
25:AIincars:purchasemotivationorblocker?51
Figure26:TrustinstakeholderswithregardtotheimplementationofAIinvehicles52
Figure27:WillingnesstopayforAIfunctions52
Abb.28:AssessmentofthefutureAIcompetenceofcarmanufacturersbyregion53
Figure
29:Customerandusecasefirst,andthenAIapplicationsandmodels57
Figure30:Dimensionsforvalidatingtechnicalfeasibility57
Figure31:TrainingcostsforAImodelsareincreasing(StanfordUniversity,2024)64
Figure32:Dataavailabilityandqualitybyregion65
Figure33:Customers’willingnesstopayisunclear;costsariseforimplementationandoperation66
Figure
34:ClassificationofAIusecasecategoriesandpossiblebusinessmodels67
Figure35:RisksassociatedwiththeuseofAI68
Figure
36:PrinciplesandpenaltiesoftheEUAIAct70
Table1:ThedevelopmentofAImodelsdividedintodifferenttimephases27
12KeyFindings
ThewidespreaduseofAIispredictedtobethenextrelevantplatformshiftaftercloudtransformation–originalequipmentmanufacturers(OEMs)needtostepuptheiractivities.
Morethan
Only
ofrespondentsseetime-savingasthebiggestbenefitofAIapplications.
SkepticismaboutAI
applicationsisgreaterin
theUSthaninEurope
orChina.
ofrespondentsinChinastatethattherisksofAI
outweighthebenefits;thisfigureisaround25percentinEuropeandtheUS.
Themostfrequentlymentioneddisadvantagesof
AIarefearoflossofcontrol,lossofdataprotectionandpersonalprivacy,andsecurityrisks.
8
CustomersworldwidewanttouseAIincars,butrarelypayforit.
InChina,morethantwiceasmanycustomershavealreadyusedAIintheircarsasin
Europe.
KI
InChina,AIfunctionsmostlyhaveapositive
influenceoncar
purchasing
decisions–only
ofrespondents
wouldnotbuy
avehiclebasedonAIfunctions.
TraditionalcarmanufacturersarethemosttrustedwhenitcomestotheuseofAI,far
aheadofstateinstitutionsandnewcarmanufacturers.
Today,Chinesecar
manufacturersareregardedasleadersinAIinnovation.Infiveyears’time,JapaneseOEMswillbeattheforefront,followedbyChineseandGermanOEMs.
AIisnotonlyrevolutionizingthein-vehiclecustomerexperience–theentirevaluechainis
experiencingdisruptivechange.
SuccessfulimplementationofAIapplicationsisnotpossiblewithoutpriordigitalizationandaccesstospecificdatasources.
AIasGameChanger|12KeyFindings
9
10
WelcometoChange!
Dearreaders,
Artificialintelligencewillbethenextplatformshiftthatrevolutionizesallindustrialsectors.StakeholdersintheautomotivevaluechainhaverealizedthatAIischallengingmanytradi-tionalprocessesandwaysofthinking.TheintroductionofthePC,thestationaryInternetandthenthemobileInternet,andCloud/SaaSpreviouslyhadasimilarlydisruptiveimpact.Newbusinessmodelsandprofitpoolsareemerging,whileatthesametimetherearenu-merouschallengestobetackledwithregardtotechnology,partnerships,andethicalissues.Inthisstudy,wetracethegroundbreakingdevelopmentsinAIsofarandexaminetheop-portunitiesandriskswithintheautomotiveindustry.Accompanyusthroughpresentandfuturescenarios–withspecificrecommendationsforactionforyourownstrategywhenitcomestoimplementingAIapplicationsinproductionandinvehicles.
Whetherthenewtechnologiesmeettheexpectationsofdriversisdeterminedrightthereinthecockpit.That’swhy,inChapter8,weoutlinetheuserperspectivebasedonourowncurrentdata.OurinternationalsurveyprovidesinformationaboutwhichproductsandservicesfromautomotivecompaniescouldfulfillAIneedsandwhatthewillingnesstopaylookslike.Thatmakesthisstudyessentialreadingfordecision-makers,CIOs,andapplica-tiondevelopers.
InvestorsinAItechnologiesandAIteamsneedaconsistent,long-termcost-benefitratio.Wethereforeexaminethedirect/indirectmonetizationofin-carAIandlookatnewbusinessmodelsbasedonAIanddigitalization.
Ultimately,asissooftenthecase,itbecomesclearthatthejourneyintonewtechnologicalterritoryisbestundertakenwithexperiencedtravelguides.Gettheknow-howyouneed–andalwaysbecurious!
ENABLINGYOUTOSHAPEABETTERTOMORROW
Bestregards,
Dr.JanWehinger
ClusterLeadSoftwareDefinedVehicles
MHPManagement-undIT-BeratungGmbHLudwigsburg,September2024
AIasGameChanger|01.RevolutionandAutomotiveMarketPotential
01.
Revolutionand
AutomotiveMarketPotential
11
EveryonerecognizesthatAIisthenextplatformshift
Mobile Internet(Web2.0)
Cloud/SaaS
GenerativeAI
Desktop Internet(Web1.0)
Networking
PC
Mainframe
1960–19801980s1990s2000s2010s2015–20202022–...
Figure1:Technologysupercycles–artificialintelligenceasthenextrelevantplatformshift(Coatue,2024)
AI-Basedsystemsforautomotiveindustrytoreach
US$35.7billionby2033
35.7
26.6
20.0
...inbillionUS$
15.2
11.7
9.2
5.8
7.3
3.9
4.7
3.2
20232024202520262027202820292030203120322033
Figure2:AImarketsizeintheautomotivesector(PrecedenceResearch,2024)
12
ItishighlylikelythatthebigtechnologycompaniessuchasGoogle,Meta,andMicrosoft–whichgainedinimportancewiththelastplatformshifts(supercy-cles)–willalsodominatetheAIage.
Alongtheautomotivevaluechain,stakeholdersaresometimesaccusedofhavingrespondedtothelastplatformshiftstoolateorwithanineffectivestrategy.Inouropinion,therelevanceofconnectivityandcloudsolutionswasrecognizedtoolateandimplementationcouldhavebeenbetter.Theindustryisatthebegin-ningoftheAIplatformshiftandthereisstilltheop-portunitytorespondearlywithatargetedstrategy.CompanieslikeApplehaveshownthatitisnotneces-
Onefear,however,isthatartificialintelligencewillincreasinglyreplacepeopleandjobsmaydisappear.Currently,AIapplicationsareregardedmoreasacom-plementratherthanareplacement.AcademicssuchasKarimLakhanifromHarvardBusinessSchoolbelievethatAIwillnotreplacehumans.OnepossiblescenarioisthatpeoplewhouseAIwillhaveasignificantadvan-tageoverworkerswhodonotuseit.
RegardingthequestionofwhetherAIwillimprovetheeconomy,asurveyshowsamixedpicture.Worldwide,34percentofrespondentsbelievethattheuseofAIwillimprovetheeconomicsituationintheircountryinthenextthreetofiveyears.Thishopeisaboveaverage
“AIWon’tReplaceHumans—
ButHumansWithAIWillReplaceHumansWithoutAI.”(HBR,2023)
sarytobethefirstinnovator.WithastrongAIstrategy,acompanycanalsoexploitpotentialasafastfollower.Themarketforartificialintelligenceintheautomotiveindustryhasshownremarkablegrowthinrecentyears.ItiscurrentlyestimatedtobearoundUSD3.9billionin2024andisexpectedtogrowtoUSD15billionby2030.SomemarketanalysesanticipatethatAIsalesintheautomotivesectorwillrisetooverUSD35billionin2033.Growthfrom2024to2033correspondstoarateof28percent.
Estimatesinothermarketreportsmaybeslightlyhigh-erorlower,butallshowthesametrend.Thismeansthatextensiveeconomicopportunitiesarebeingcreat-edalongthevaluechainformanufacturers,suppliers,andserviceproviders.
incountriessuchasThailand,India,andSouthAfrica.Atthelowerendoftherankingarecountriesinclud-ingBelgium,Japan,theUS,andFrance(Ipsos,2023).Overall,thereareincreasingsignsthattherearefarmoreopportunitiesthanrisks.Thetargeteduseofarti-ficialintelligencewillsignificantlyaffectourprosperityinthecomingdecades.AIboostsefficiencyandcancounterthenegativeeffectsofskillsshortages,demo-graphicchanges,andhighlocationcosts.Itisnowuptotheautomotiveindustrytotakeboldandappropri-atelyfastaction–andfollowastrategicallyintelligentapproach.
AIasGameChanger|01RevolutionandAutomotiveMarketPotential
13
14
AIasGameChanger|02.InvestmentinCompaniesWithanAIFocus
02.
Investmentin
CompaniesWithanAIFocus
15
16
Magnetforinvestment:TotalinvestmentinAIcompaniesfoundedsince2001inbillionsofUSdollars
16.5bn.US$GreatBritain
4.6bn.US$WashingtonDC
5.0bn.US$Germany
29.2bn.US$NewYork
6.1bn.US$France
16.6bn.US$Boston
★★★
★★
★★
★★
★★★
39.6
Bn.US$
8.4bn.US$
Diego
10.2bn.US$LosAngeles
5.3bn.US$San
Dallas
234.1
Bn.US$
101.2
bn.US$
55.8bn.US$SanFrancisco
7bn.US$Seattle
41.7
bn.US$SiliconValley
Figure3:TotalinvestmentsinAIcompaniesfoundedsince2001,inUSDbillion(Scheuer,2024)
AlookatthedistributionofAIinvestmentshowsthedominanceofthoseregionsthatalsodominatedthemarketinthelastplatformshifts(seeCoatue,2024;Figure1).Itcanbeassumedthattheautomotivein-dustrywillcontinuetobedependentonhyperscalersandtechnologycompanies.Collaborationsregardingsoftware,cloudapplications,andtheuseofAIareex-pectedtoincrease.
AnanalysisshowsthatalargeshareoftheinvestmentinAIcompaniescomesfromtheUS.Acloserlook(Coatue,2024)showsthatonlyapprox.3percentoftheventurecapitaldealshaveaclearlinktoAI,butthat15percentoftheinvestedcapitalflowsintoAIstart-ups.Fromthisimbalance,itcanbeconcluded
thatthemarketseesrelativelyhighvaluationsandcorrespondinglyhighinvestmentrounds.Thefinanc-ingroundsshowthatmostoftheinvestmentsin2024wentintocompaniesthatdevelopAImodelssuchasChatGPT,Mistral,andClaude.AtotalofUSD14bil-lionwasinvestedinAImodelsinthefirsthalfoftheyear.Thisequatesto62percent.
In2024,asmallerproportionofthecapitalinvestedinAIcompanieswentintofirmsthatdevelopsemicon-ductorsforAIapplications.Roboticsapplications,suchashumanoidrobots,garneredapprox.USD2billionincapital,whichcorrespondstoaround9percentofthetotal.
17
AmongthelargestinvestorsintheAIfieldarethemajortechnologycompaniesincludingMicrosoft,Amazon,NVIDIA,andAlphabet(Google’sholdingcompany).In2023,thesecompaniesinvestedaroundUSD25billionandwerethusresponsiblefor8percentofinvestment.
Carmanufacturers’investmentsincompaniesthatdealwithartificialintelligencearemoremodest.Belowaresomeexamples:
InvestmentsbyNIOCapital
Momenta:Start-upwithafocusonautonomousdriv-ingandonthedevelopmentoftechnologiesforenvi-ronmentalperceptionandhigh-precisionmapping
Pony.ai:Companyfocusingonautonomousdriving;itformspartnershipstodevelopmobilitysolutions
BlackSesameTechnologies:CompanyspecializinginAIchipsandsystems
InvestmentsbyBMWiVentures
Alitheon:SpecializesinopticalAItechnologyforob-jectidentificationandauthenticationwithFeaturePrinttechnology
Recogni:Focusesonhigh-performanceAIprocessingwithlowpowerconsumptionforautonomousvehicles
AutoBrains:DevelopsAIsolutionsfortheautomotiveindustry,particularlyinthefieldofautonomousdriv-ingtechnologies
InvestmentsbyPorsche
Sensigo:DeveloperofanAI-supportedplatformforoptimizingvehiclediagnosticsandrepairprocesses
Waabi:CanadiandeveloperofAI-basedsolutionsforself-drivingtrucks
AppliedIntuition:Providessoftwaresolutionsforthedevelopmentofdriverassistancesystemsandauton-omousdriving
Cresta:Specializesinreal-timeintelligenceforcustom-erinteractionsandcommunicationsolutions
WhereareAIVCdollarsgoing?
Funding~$14B~$4B~$2B~$2B~$100M
100
80
60
40
20
0
62%
AIModels
20%
AIApps
9%
AIOps/AICloud
9%
AIRobotics
<1%
AISemis
AIasGameChanger|02InvestmentinCompaniesWithanAIFocus
Figure4:InvestmentinAIstacklayers(Coatue,2024)
18
AIasGameChanger|03.PilotProjectsandImplementation
03.
PilotProjectsandImplementation
19
20
Without
comprehensivepriordigitalization,the
implementationof
AIapplicationswill
beaninsurmountablechallenge.Car
manufacturersandsuppliersshould
allocatebudgetsforAIandbuildup
expertisepromptly.
21
Intheautomotiveindustry,amixedpictureisemergingwithregardtotheacceptanceandimplementationofAIapplicationsalongthevaluechain.Thelevelofim-plementationislowamongsuppliersanddealersandinafter-salesservices.Automobilemanufacturershavemadefurtherprogressintermsofimplementation,butthereissignificantpotentialforimprovementhere.
Lookingattheautomotiveindustryasawhole,only4percentofcompanieshavebeguntoimplementAIapplicationsatselectedlocations.Thatisaroundhalfasmuchasinthepharmaceuticalindustry.Inretail,thefigureisfourtimeshigher.Some28percentofcompaniesintheautomotivevaluechainareworkingonAIpilotprojects,andthevastmajority(68percent)arestillatexplorationstage(CapgeminiResearchIn-stitute,2023).
Only30percentofthecompaniesintheautomotivesectorhaveadedicatedteamandanextrabudgetfortheintroductionandimplementationofAIprojects.Bycomparison,therateis62percentinretail,74percentinthehigh-techsector,and52percentinaerospace/defense.(Capgemini,2023)
Interimconclusion:Theautomotiveindustry’sinvest-mentinAIhasbeenbelowaveragetodate;thisaffectsbudgetsandspecializedteams.GiventhehugeimpactofAIontheindustry,itisadvisabletorectifythissitua-tionquickly.
ProportionofcompanieswithadedicatedteamandbudgetforAI
A
e
g
a
r
62%
ve
52%
36%
30%
40%
74%
CarHighTech
manufacturing
RetailAerospace/
defense
Tele-
communi-
cations
AIasGameChanger|03PilotProjectsandImplementation
Figure5:CompanieswithteamandbudgetforAI(Capgemini,2023)
22
AIasGameChanger|04.AIModels,Levels,andUseCases
04.
AIModels,Levels,andUseCases
23
24
Interconnected
AIconcepts
Eachconceptisaspecializedpart
oftheoneprecedingit.
Figure6:InterconnectedAIconcepts
AIcoversawidefieldthatcanbedividedintoseveralareasandtermsusingahierarchicaldiagram:
ArtificialIntelligence(AI):Researchareafocusingonthecreationofintelligentmachines.
Machinelearning(ML):BranchofAIfocusingonthedevelopmentofmachinesthatcanlearnfromdata.
Deeplearning:Asub-categoryofmachinelearn-ingbasedonartificialneuralnetworks.Examplesareconvolutionalneuralnetworks(CNNs)andrecurrentneuralnetworks(RNNs).
GenerativeAI:Aspecialtypeofartificialneuralnet-worksthatgeneratedatasimilartothetrainingdata.Examplesaregenerativeadversarialnetworks(GANs)andlargelanguagemodels(LLMs).
WithAIapplications,variouscategoriesofusecasescanbeimplemented:
Datamanagement:Thisinvolvesharmonizingdataandobtainingfindings.Itisessentialforthe
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農(nóng)村土地流轉(zhuǎn)價(jià)格協(xié)商及合同簽訂服務(wù)合同
- 二零二五年度農(nóng)業(yè)農(nóng)機(jī)廢棄物處理與資源化利用合同3篇
- 二零二五年度股東間人力資源共享合作協(xié)議書(shū)3篇
- 二零二五年度現(xiàn)代農(nóng)業(yè)農(nóng)機(jī)推廣與應(yīng)用合同2篇
- 二零二五年度老舊小區(qū)改造項(xiàng)目物業(yè)用房移交合同3篇
- 2025農(nóng)村房屋買(mǎi)賣(mài)及配套設(shè)施保險(xiǎn)合同2篇
- 二零二五年度豬肉產(chǎn)品研發(fā)與市場(chǎng)推廣合同3篇
- 二零二五年度房地產(chǎn)項(xiàng)目三方合作協(xié)議書(shū)3篇
- 二零二五年度全新和公司簽訂的全新智慧城市規(guī)劃設(shè)計(jì)勞動(dòng)合同3篇
- 二零二五年度健康養(yǎng)生兼職講師服務(wù)協(xié)議3篇
- (八省聯(lián)考)云南省2025年普通高校招生適應(yīng)性測(cè)試 物理試卷(含答案解析)
- 2025年大學(xué)華西醫(yī)院運(yùn)營(yíng)管理部招考聘用3人管理單位筆試遴選500模擬題附帶答案詳解
- 2025年放射科工作計(jì)劃
- 【8地RJ期末】安徽省合肥市肥西縣2023-2024學(xué)年八年級(jí)上學(xué)期期末考試地理試題(含解析)
- 2024年中國(guó)干粉涂料市場(chǎng)調(diào)查研究報(bào)告
- 2024年副班主任工作總結(jié)(3篇)
- 課題申報(bào)書(shū):古滇青銅文化基因圖譜構(gòu)建及活態(tài)深化研究
- 統(tǒng)編版2024-2025學(xué)年第一學(xué)期四年級(jí)語(yǔ)文期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試卷(含答案)
- 2024年城鄉(xiāng)學(xué)校結(jié)對(duì)幫扶工作總結(jié)范例(3篇)
- 房地產(chǎn)法律風(fēng)險(xiǎn)防范手冊(cè)
- 《監(jiān)考人員培訓(xùn)》課件
評(píng)論
0/150
提交評(píng)論