




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省眉山市東坡區(qū)多悅高級(jí)中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直角坐標(biāo)系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點(diǎn)P,使得|PA|=2|PB|,則正實(shí)數(shù)m的最小值是()A. B.3 C. D.2.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)P是C的右支上一點(diǎn),連接與y軸交于點(diǎn)M,若(O為坐標(biāo)原點(diǎn)),,則雙曲線C的漸近線方程為()A. B. C. D.3.德國(guó)數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個(gè)關(guān)于π的級(jí)數(shù)展開式,該公式于明朝初年傳入我國(guó).在我國(guó)科技水平業(yè)已落后的情況下,我國(guó)數(shù)學(xué)家?天文學(xué)家明安圖(1692年-1765年)為提高我國(guó)的數(shù)學(xué)研究水平,從乾隆初年(1736年)開始,歷時(shí)近30年,證明了包括這個(gè)公式在內(nèi)的三個(gè)公式,同時(shí)求得了展開三角函數(shù)和反三角函數(shù)的6個(gè)新級(jí)數(shù)公式,著有《割圓密率捷法》一書,為我國(guó)用級(jí)數(shù)計(jì)算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級(jí)數(shù)展開式”計(jì)算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.4.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.5.在中,角的對(duì)邊分別為,若.則角的大小為()A. B. C. D.6.已知雙曲線,為坐標(biāo)原點(diǎn),、為其左、右焦點(diǎn),點(diǎn)在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.7.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為則()A. B.C. D.9.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.10.拋物線的焦點(diǎn)為,準(zhǔn)線為,,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)線段的中點(diǎn)在上的投影為,則的最大值是()A. B. C. D.11.在復(fù)平面內(nèi),復(fù)數(shù)z=i對(duì)應(yīng)的點(diǎn)為Z,將向量繞原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn),所得向量對(duì)應(yīng)的復(fù)數(shù)是()A. B. C. D.12.已知拋物線:,點(diǎn)為上一點(diǎn),過點(diǎn)作軸于點(diǎn),又知點(diǎn),則的最小值為()A. B. C.3 D.5二、填空題:本題共4小題,每小題5分,共20分。13.三棱錐中,點(diǎn)是斜邊上一點(diǎn).給出下列四個(gè)命題:①若平面,則三棱錐的四個(gè)面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內(nèi)心,則三棱錐的體積為2;④若,,,平面,則直線與平面所成的最大角為.其中正確命題的序號(hào)是__________.(把你認(rèn)為正確命題的序號(hào)都填上)14.已知數(shù)列的前項(xiàng)和為且滿足,則數(shù)列的通項(xiàng)_______.15.已知圓C:經(jīng)過拋物線E:的焦點(diǎn),則拋物線E的準(zhǔn)線與圓C相交所得弦長(zhǎng)是__________.16.戊戌年結(jié)束,己亥年伊始,小康,小梁,小譚,小楊,小劉,小林六人分成四組,其中兩個(gè)組各2人,另兩個(gè)組各1人,分別奔赴四所不同的學(xué)校參加演講,則不同的分配方案有_________種(用數(shù)字作答),三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點(diǎn),且,求直線與平面所成角的正弦值.18.(12分)已知函數(shù),不等式的解集為.(1)求實(shí)數(shù),的值;(2)若,,,求證:.19.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:空氣質(zhì)量?jī)?yōu)良輕度污染中度污染重度污染嚴(yán)重污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計(jì)該企業(yè)一個(gè)月(按30天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.20.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為.(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線l與曲線C交于不同的兩點(diǎn)A、B,求的值.21.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點(diǎn),以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)位置(平面).(1)若為直線上任意一點(diǎn),證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.22.(10分)已知關(guān)于的不等式解集為().(1)求正數(shù)的值;(2)設(shè),且,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè)點(diǎn),由,得關(guān)于的方程.由題意,該方程有解,則,求出正實(shí)數(shù)m的取值范圍,即求正實(shí)數(shù)m的最小值.【詳解】由題意,設(shè)點(diǎn).,即,整理得,則,解得或..故選:.【點(diǎn)睛】本題考查直線與方程,考查平面內(nèi)兩點(diǎn)間距離公式,屬于中檔題.2、C【解析】
利用三角形與相似得,結(jié)合雙曲線的定義求得的關(guān)系,從而求得雙曲線的漸近線方程?!驹斀狻吭O(shè),,由,與相似,所以,即,又因?yàn)椋?,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點(diǎn)睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運(yùn)算求解能力。3、B【解析】
執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計(jì)算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時(shí)滿足判定條件,輸出結(jié)果,故選:B.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,得到程序框圖的計(jì)算功能是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.4、C【解析】
利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點(diǎn)睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.5、A【解析】
由正弦定理化簡(jiǎn)已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點(diǎn)睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.6、D【解析】
根據(jù),先確定出的長(zhǎng)度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡(jiǎn)后可得到的值,即可求漸近線方程.【詳解】如圖所示:因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點(diǎn)睛】本題考查根據(jù)雙曲線中的長(zhǎng)度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點(diǎn)到漸近線的距離等于虛軸長(zhǎng)度的一半.7、C【解析】所對(duì)應(yīng)的點(diǎn)為(-1,-2)位于第三象限.【考點(diǎn)定位】本題只考查了復(fù)平面的概念,屬于簡(jiǎn)單題.8、B【解析】
根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡(jiǎn)即可求解.【詳解】在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則,,∵,代入可得,解得.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.9、C【解析】根據(jù)命題的否定,可以寫出:,所以選C.10、B【解析】
試題分析:設(shè)在直線上的投影分別是,則,,又是中點(diǎn),所以,則,在中,所以,即,所以,故選B.考點(diǎn):拋物線的性質(zhì).【名師點(diǎn)晴】在直線與拋物線的位置關(guān)系問題中,涉及到拋物線上的點(diǎn)到焦點(diǎn)的距離,焦點(diǎn)弦長(zhǎng),拋物線上的點(diǎn)到準(zhǔn)線(或與準(zhǔn)線平行的直線)的距離時(shí),常常考慮用拋物線的定義進(jìn)行問題的轉(zhuǎn)化.象本題弦的中點(diǎn)到準(zhǔn)線的距離首先等于兩點(diǎn)到準(zhǔn)線距離之和的一半,然后轉(zhuǎn)化為兩點(diǎn)到焦點(diǎn)的距離,從而與弦長(zhǎng)之間可通過余弦定理建立關(guān)系.11、A【解析】
由復(fù)數(shù)z求得點(diǎn)Z的坐標(biāo),得到向量的坐標(biāo),逆時(shí)針旋轉(zhuǎn),得到向量的坐標(biāo),則對(duì)應(yīng)的復(fù)數(shù)可求.【詳解】解:∵復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對(duì)應(yīng)點(diǎn)Z(0,1),
∴=(0,1),將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到,
設(shè)=(a,b),,則,即,
又,解得:,∴,對(duì)應(yīng)復(fù)數(shù)為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.12、C【解析】
由,再運(yùn)用三點(diǎn)共線時(shí)和最小,即可求解.【詳解】.故選:C【點(diǎn)睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運(yùn)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】
對(duì)①,由線面平行的性質(zhì)可判斷正確;對(duì)②,三棱錐外接球可看作正方體的外接球,結(jié)合外接球半徑公式即可求解;對(duì)③,結(jié)合題意作出圖形,由勾股定理和內(nèi)接圓對(duì)應(yīng)面積公式求出錐體的高,則可求解;對(duì)④,由動(dòng)點(diǎn)分析可知,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線與平面所成的角最大,結(jié)合幾何關(guān)系可判斷錯(cuò)誤;【詳解】對(duì)于①,因?yàn)槠矫?,所以,,,又,所以平面,所以,故四個(gè)面都是直角三角形,∴①正確;對(duì)于②,若,,,平面,∴三棱錐的外接球可以看作棱長(zhǎng)為4的正方體的外接球,∴,,∴體積為,∴②正確;對(duì)于③,設(shè)內(nèi)心是,則平面,連接,則有,又內(nèi)切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對(duì)于④,∵若,平面,則直線與平面所成的角最大時(shí),點(diǎn)與點(diǎn)重合,在中,,∴,即直線與平面所成的最大角為,∴④不正確,故答案為:①②③.【點(diǎn)睛】本題考查立體幾何基本關(guān)系的應(yīng)用,線面垂直的性質(zhì)及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題14、【解析】
先求得時(shí);再由可得時(shí),兩式作差可得,進(jìn)而求解.【詳解】當(dāng)時(shí),,解得;由,可知當(dāng)時(shí),,兩式相減,得,即,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,所以,故答案為:【點(diǎn)睛】本題考查由與的關(guān)系求通項(xiàng)公式,考查等比數(shù)列的通項(xiàng)公式的應(yīng)用.15、【解析】
求出拋物線的焦點(diǎn)坐標(biāo),代入圓的方程,求出的值,再求出準(zhǔn)線方程,利用點(diǎn)到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長(zhǎng)的一半,進(jìn)而求出弦長(zhǎng).【詳解】拋物線E:的準(zhǔn)線為,焦點(diǎn)為(0,1),把焦點(diǎn)的坐標(biāo)代入圓的方程中,得,所以圓心的坐標(biāo)為,半徑為5,則圓心到準(zhǔn)線的距離為1,所以弦長(zhǎng).【點(diǎn)睛】本題考查了拋物線的準(zhǔn)線、圓的弦長(zhǎng)公式.16、1080【解析】
按照先分組,再分配的分式,先將六人分成四組,其中兩個(gè)組各2人,另兩個(gè)組各1人有種,再分別奔赴四所不同的學(xué)校參加演講有種,然后用分步計(jì)數(shù)原理求解.【詳解】將六人分成四組,其中兩個(gè)組各2人,另兩個(gè)組各1人有種,再分別奔赴四所不同的學(xué)校參加演講有種,則不同的分配方案有種.故答案為:1080【點(diǎn)睛】本題主要考查分組分配問題,還考查了理解辨析的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)利用線段長(zhǎng)度得到與間的垂直關(guān)系,再根據(jù)線面垂直的判定定理完成證明;(2)以、、為軸、軸、軸建立空間直角坐標(biāo)系,利用直線的方向向量與平面的法向量夾角的余弦值的絕對(duì)值等于線面角的正弦值,計(jì)算出結(jié)果.【詳解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又為坐標(biāo)原點(diǎn),分別以、、為軸、軸、軸建立空間直角坐標(biāo)系,則,,,,,,,∵,∴,設(shè)是平面的一個(gè)法向量則,即,取得∴∴直線與平面所成的正弦值為【點(diǎn)睛】本題考查線面垂直的證明以及用向量法求解線面角的正弦,難度一般.用向量方法求解線面角的正弦值時(shí),注意直線方向向量與平面法向量夾角的余弦值的絕對(duì)值等于線面角的正弦值.18、(1),.(2)見解析【解析】
(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立.故,即.【點(diǎn)睛】考查絕對(duì)值不等式的解法以及用均值定理證明不等式,中檔題.19、(1)(2)9060元【解析】
(1)根據(jù)古典概型概率公式和組合數(shù)的計(jì)算可得所求概率;(2)任選一天,設(shè)該天的經(jīng)濟(jì)損失為元,分別求出,,,進(jìn)而求得數(shù)學(xué)期望,據(jù)此得出該企業(yè)一個(gè)月經(jīng)濟(jì)損失的數(shù)學(xué)期望.【詳解】解:(1)設(shè)為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),則.(2)任選一天,設(shè)該天的經(jīng)濟(jì)損失為元,則的可能取值為0,220,1480,,,,所以(元),故該企業(yè)一個(gè)月的經(jīng)濟(jì)損失的數(shù)學(xué)期望為(元).【點(diǎn)睛】本題考查古典概型概率公式和組合數(shù)的計(jì)算及數(shù)學(xué)期望,屬于基礎(chǔ)題.20、(1),(2)【解析】
(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式即可把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用消去參數(shù)即可得到直線的直角坐標(biāo)方程;(2)由于在直線上,寫出直線的標(biāo)準(zhǔn)參數(shù)方程參數(shù)方程,代入曲線的方程利用參數(shù)的幾何意義即可得出求解即可.【詳解】(1)直線的普通方程為,即,根據(jù)極坐標(biāo)與直角坐標(biāo)之間的相互轉(zhuǎn)化,,,而,則,即,故直線l的普通方程為,曲線C的直角坐標(biāo)方程(2)點(diǎn)在直線l上,且直線的傾斜角為,可設(shè)直線的參數(shù)方程為:(t為參數(shù)),代入到曲線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 城鎮(zhèn)排水管道檢測(cè)與修復(fù)技術(shù)規(guī)程
- 2025屆河南省三門峽市高三11月期中考-政治試題(含答案)
- 2025年B5G技術(shù)白皮書
- 兒童社區(qū)獲得性肺炎管理指南(2024修訂)解讀 2
- 2025至2030年中國(guó)氣壓式薄管自動(dòng)紙管精切機(jī)市場(chǎng)現(xiàn)狀分析及前景預(yù)測(cè)報(bào)告
- 2025至2030年中國(guó)歐式印刷板插件架數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)樓板厚度檢測(cè)儀行業(yè)投資前景及策略咨詢報(bào)告
- 2025至2030年中國(guó)棉紡羅拉行業(yè)投資前景及策略咨詢報(bào)告
- 2025至2030年中國(guó)桌旗旗架行業(yè)投資前景及策略咨詢報(bào)告
- 2025至2030年中國(guó)樹脂水泥地面漆數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- DB22-T5020-2019城市軌道交通工程監(jiān)測(cè)技術(shù)標(biāo)準(zhǔn)
- 畢業(yè)設(shè)計(jì)(論文)-木料切割機(jī)設(shè)計(jì)
- 旅行社導(dǎo)游合同范本
- 倒立擺完整版本
- HG-T20678-2023《化工設(shè)備襯里鋼殼設(shè)計(jì)標(biāo)準(zhǔn)》
- 工程項(xiàng)目部安全生產(chǎn)治本攻堅(jiān)三年行動(dòng)實(shí)施方案
- 工業(yè)園區(qū)智慧能源管理平臺(tái)建設(shè)方案 產(chǎn)業(yè)園區(qū)智慧能源管理平臺(tái)建設(shè)方案
- 安徽省蕪湖市無為市部分學(xué)校2023-2024學(xué)年八年級(jí)下學(xué)期期中數(shù)學(xué)試題
- 《客艙安全與應(yīng)急處置》-課件:滅火設(shè)備:防護(hù)式呼吸裝置
- 《幼兒園混齡民間游戲的研究》課題研究方案
- 《脊柱腫瘤》課件
評(píng)論
0/150
提交評(píng)論