版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
武漢市重點中學(xué)2025屆高考壓軸卷數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切2.的展開式中的系數(shù)為()A.5 B.10 C.20 D.303.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.4.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達(dá)點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.5.已知(i為虛數(shù)單位,),則ab等于()A.2 B.-2 C. D.6.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題;“三百七十八里關(guān),初行健步不為難,次后腳痛遞減半,六朝才得到其關(guān),要見每朝行里數(shù),請公仔細(xì)算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達(dá)目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里7.已知函數(shù),,若存在實數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.8.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.9.已知復(fù)數(shù)是正實數(shù),則實數(shù)的值為()A. B. C. D.10.設(shè)全集為R,集合,,則A. B. C. D.11.已知展開式的二項式系數(shù)和與展開式中常數(shù)項相等,則項系數(shù)為()A.10 B.32 C.40 D.8012.在復(fù)平面內(nèi),復(fù)數(shù)z=i對應(yīng)的點為Z,將向量繞原點O按逆時針方向旋轉(zhuǎn),所得向量對應(yīng)的復(fù)數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的角所對的邊分別為,且,,若,則的值為__________.14.已知函數(shù),若函數(shù)恰有4個零點,則實數(shù)的取值范圍是________.15.一個空間幾何體的三視圖及部分?jǐn)?shù)據(jù)如圖所示,則這個幾何體的體積是___________16.記等差數(shù)列和的前項和分別為和,若,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若數(shù)列滿足:對于任意,均為數(shù)列中的項,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列的前項和,,試判斷數(shù)列是否為“數(shù)列”?說明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實數(shù),使得,證明:.19.(12分)在平面直角坐標(biāo)系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構(gòu)成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、.試判斷是否為定值,并說明理由.20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)曲線在點處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.21.(12分)橢圓:()的離心率為,它的四個頂點構(gòu)成的四邊形面積為.(1)求橢圓的方程;(2)設(shè)是直線上任意一點,過點作圓的兩條切線,切點分別為,,求證:直線恒過一個定點.22.(10分)已知函數(shù).(1)解不等式;(2)使得,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.2、C【解析】
由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構(gòu)成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數(shù)為.故選:C.【點睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應(yīng)寫準(zhǔn)確,本題是一道基礎(chǔ)題.3、D【解析】
根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.4、C【解析】
過作于,連接,易知,,從而可證平面,進(jìn)而可知,當(dāng)最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當(dāng)最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學(xué)生的空間想象能力與計算求解能力,屬于中檔題.5、A【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)相等的條件列式求解.【詳解】,,得,..故選:.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)相等的條件,意在考查學(xué)生對這些知識的理解掌握水平,是基礎(chǔ)題.6、C【解析】
設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得:,解得(里,(里.故選:C.【點睛】本題考查等比數(shù)列的某一項的求法,考查等比數(shù)列等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.7、A【解析】
根據(jù)實數(shù)滿足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,∴,∴.故選:A.【點睛】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.8、C【解析】
由每個函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因為函數(shù)和在遞增,而在遞減.故選:C【點睛】本題主要考查常見簡單函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.9、C【解析】
將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實部大于零,虛部等于零,即可得到答案.【詳解】因為為正實數(shù),所以且,解得.故選:C【點睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.10、B【解析】分析:由題意首先求得,然后進(jìn)行交集運算即可求得最終結(jié)果.詳解:由題意可得:,結(jié)合交集的定義可得:.本題選擇B選項.點睛:本題主要考查交集的運算法則,補(bǔ)集的運算法則等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.11、D【解析】
根據(jù)二項式定理通項公式可得常數(shù)項,然后二項式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時,常數(shù)項為又展開式的二項式系數(shù)和為由所以當(dāng)時,所以項系數(shù)為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細(xì)心計算,屬基礎(chǔ)題.12、A【解析】
由復(fù)數(shù)z求得點Z的坐標(biāo),得到向量的坐標(biāo),逆時針旋轉(zhuǎn),得到向量的坐標(biāo),則對應(yīng)的復(fù)數(shù)可求.【詳解】解:∵復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對應(yīng)點Z(0,1),
∴=(0,1),將繞原點O逆時針旋轉(zhuǎn)得到,
設(shè)=(a,b),,則,即,
又,解得:,∴,對應(yīng)復(fù)數(shù)為.故選:A.【點睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先利用余弦定理求出,再用正弦定理求出并把轉(zhuǎn)化為與邊有關(guān)的等式,結(jié)合可求的值.【詳解】因為,故,因為,所以.由正弦定理可得三角形外接圓的半徑滿足,所以即.因為,解得或(舍).故答案為:.【點睛】本題考查正弦定理、余弦定理在解三角形中的應(yīng)用,注意結(jié)合求解目標(biāo)對所得的方程組變形整合后整體求解,本題屬于中檔題.14、【解析】
函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象如下圖所示:由圖象可知:實數(shù)的取值范圍是.故答案為:【點睛】本題考查了已知函數(shù)零點個數(shù)求參數(shù)取值范圍問題,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想.15、【解析】
先還原幾何體,再根據(jù)柱體體積公式求解【詳解】空間幾何體為一個棱柱,如圖,底面為邊長為的直角三角形,高為的棱柱,所以體積為【點睛】本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎(chǔ)題16、【解析】
結(jié)合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數(shù)列的前項和公式及等差中項的應(yīng)用,考查了學(xué)生的計算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)不是,見解析(2)(3)【解析】
(1)利用遞推關(guān)系求出數(shù)列的通項公式,進(jìn)一步驗證時,是否為數(shù)列中的項,即可得答案;(2)由題意得,再對公差進(jìn)行分類討論,即可得答案;(3)由題意得數(shù)列為等差數(shù)列,設(shè)數(shù)列的公差為,再根據(jù)不等式得到公差的值,即可得答案;【詳解】(1)當(dāng)時,又,所以.所以當(dāng)時,,而,所以時,不是數(shù)列中的項,故數(shù)列不是為“數(shù)列”(2)因為數(shù)列是公差為的等差數(shù)列,所以.因為數(shù)列為“數(shù)列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數(shù)列中的項.②若,則.此時,當(dāng)時,不為正整數(shù),所以不符合題意.綜上,.(3)由題意,所以,又因為,且數(shù)列為“數(shù)列”,所以,即,所以數(shù)列為等差數(shù)列.設(shè)數(shù)列的公差為,則有,由,得,整理得,①.②若,取正整數(shù),則當(dāng)時,,與①式對應(yīng)任意恒成立相矛盾,因此.同樣根據(jù)②式可得,所以.又,所以.經(jīng)檢驗當(dāng)時,①②兩式對應(yīng)任意恒成立,所以數(shù)列的通項公式為.【點睛】本題考查數(shù)列新定義題、等差數(shù)列的通項公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度較大.18、(1)當(dāng)時,在上遞增,在上遞減;當(dāng)時,在上遞增,在上遞減,在上遞增;當(dāng)時,在上遞增;當(dāng)時,在上遞增,在上遞減,在上遞增;(2)證明見解析【解析】
(1)對求導(dǎo),分,,進(jìn)行討論,可得的單調(diào)性;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,,設(shè),可得,則,設(shè),對求導(dǎo),利用其單調(diào)性可證明.【詳解】解:的定義域為,因為,所以,當(dāng)時,令,得,令,得;當(dāng)時,則,令,得,或,令,得;當(dāng)時,,當(dāng)時,則,令,得;綜上所述,當(dāng)時,在上遞增,在上遞減;當(dāng)時,在上遞增,在上遞減,在上遞增;當(dāng)時,在上遞增;當(dāng)時,在上遞增,在上遞減,在上遞增;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,此時,設(shè),又因為,則,設(shè),則對于任意成立,所以在上是增函數(shù),所以對于,有,即,有,因為,所以,即,又在遞增,所以,即.【點睛】本題主要考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性及導(dǎo)數(shù)在極值點偏移中的應(yīng)用,考查學(xué)生分類討論與轉(zhuǎn)化的思想,綜合性大,屬于難題.19、(1)(2)為定值.【解析】
(1)根據(jù)題意,得出,從而得出橢圓的標(biāo)準(zhǔn)方程.(2)根據(jù)題意設(shè)直線方程:,因為直線與橢圓相切,這有一個交點,聯(lián)立直線與橢圓方程得,則,解得①把和代入,得和,,的表達(dá)式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標(biāo)準(zhǔn)方程為.(2)為定值.①因為直線分別與直線和直線相交,所以,直線一定存在斜率.②設(shè)直線:,由得,由,得.①把代入,得,把代入,得,又因為,所以,,②由①式,得,③把③式代入②式,得,,即為定值.【點睛】本題考查橢圓的定義、方程、和性質(zhì),主要考查橢圓方程的運用,考查橢圓的定值問題,考查計算能力和轉(zhuǎn)化思想,是中檔題.20、(1)在上增;在上減;(2)(i);(ii)2【解析】
(1)求導(dǎo)求出,對分類討論,求出的解,即可得出結(jié)論;(2)(i)由,求出的值;(ii)由(i)得所求問題轉(zhuǎn)化為,恒成立,設(shè),,只需,根據(jù)的單調(diào)性,即可求解.【詳解】(1)當(dāng)時,,即在上增;當(dāng)時,,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當(dāng)時,,在單調(diào)遞增,所以滿足題意;當(dāng)時,,,,所以在上減,在上增,令,..在單調(diào)遞減,所以所以在上單調(diào)遞減,,綜上可知,整數(shù)的最大值為.【點睛】本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,涉及函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.21、(1);(2)證明見解析.【解析】
(1)根據(jù)橢圓的基本性質(zhì)列出方程組,即可得出橢圓方程;(2)設(shè)點,,,由,,結(jié)合斜率公式化簡得出,,即,滿足,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育微課程設(shè)計與制作
- 股票大盤分析課程設(shè)計
- 2025年度新能源汽車電池包裝運輸合同模板3篇
- 種植果蔬幼兒課程設(shè)計
- 機(jī)床課程設(shè)計報告
- 立體存儲站課程設(shè)計
- 液氨課程設(shè)計答辯
- 遺傳資源保護(hù)國際合作-洞察分析
- 夏令營開營方案流程
- 虛擬現(xiàn)實在多語種學(xué)習(xí)中的優(yōu)勢分析-洞察分析
- 《基業(yè)長青》讀書心得總結(jié)
- 團(tuán)體建筑施工人員意外傷害保險條款(2012版)
- 合規(guī)性評價報告(2022年)
- 大連市小升初手冊
- 《自然辯證法》課后習(xí)題答案自然辯證法課后題答案
- 燃?xì)夤こ瘫O(jiān)理實施細(xì)則(通用版)
- E車E拍行車記錄儀說明書 - 圖文-
- 人才梯隊-繼任計劃-建設(shè)方案(珍貴)
- 《健身氣功》(選修)教學(xué)大綱
- 王家?guī)r隧道工程地質(zhì)勘察報告(總結(jié))
- 《昆明的雨》優(yōu)質(zhì)課一等獎(課堂PPT)
評論
0/150
提交評論