版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
吉林省長春九臺(tái)市師范高級(jí)中學(xué)2025屆高三第一次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列中,,,則數(shù)列的前10項(xiàng)和()A.100 B.210 C.380 D.4002.將函數(shù)的圖像向左平移個(gè)單位長度后,得到的圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則的最小值為()A. B. C. D.3.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點(diǎn),則的最大值是()A. B.1 C. D.24.若直線的傾斜角為,則的值為()A. B. C. D.5.已知函數(shù),若恒成立,則滿足條件的的個(gè)數(shù)為()A.0 B.1 C.2 D.36.已知展開式的二項(xiàng)式系數(shù)和與展開式中常數(shù)項(xiàng)相等,則項(xiàng)系數(shù)為()A.10 B.32 C.40 D.807.的展開式中,項(xiàng)的系數(shù)為()A.-23 B.17 C.20 D.638.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計(jì)算出半音比例,為這個(gè)理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個(gè)純八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它的前一個(gè)單音的頻率的比都等于.若第一個(gè)單音的頻率為f,則第八個(gè)單音的頻率為A. B.C. D.9.費(fèi)馬素?cái)?shù)是法國大數(shù)學(xué)家費(fèi)馬命名的,形如的素?cái)?shù)(如:)為費(fèi)馬索數(shù),在不超過30的正偶數(shù)中隨機(jī)選取一數(shù),則它能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的概率是()A. B. C. D.10.為虛數(shù)單位,則的虛部為()A. B. C. D.11.已知雙曲線的右焦點(diǎn)為為坐標(biāo)原點(diǎn),以為直徑的圓與雙曲線的一條漸近線交于點(diǎn)及點(diǎn),則雙曲線的方程為()A. B. C. D.12.已知數(shù)列是公比為的等比數(shù)列,且,,成等差數(shù)列,則公比的值為(
)A. B. C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)O為坐標(biāo)原點(diǎn),,若點(diǎn)B(x,y)滿足,則的最大值是__________.14.已知為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上移動(dòng)時(shí),的內(nèi)心的軌跡方程為__________.15.已知,滿足約束條件,則的最小值為__________.16.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,則a2=____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:()的焦點(diǎn)到點(diǎn)的距離為.(1)求拋物線的方程;(2)過點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,,點(diǎn)、分別在第一和第二象限內(nèi),求的面積.18.(12分)已知函數(shù).(1)若函數(shù)的圖象與軸有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;(2)若對(duì)任意成立,求實(shí)數(shù)的取值范圍.19.(12分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線的直角坐標(biāo)方程;(2)求曲線上的點(diǎn)到直線距離的最小值和最大值.20.(12分)記為數(shù)列的前項(xiàng)和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項(xiàng)和.21.(12分)已知在中,內(nèi)角所對(duì)的邊分別為,若,,且.(1)求的值;(2)求的面積.22.(10分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)若,求曲線與的交點(diǎn)坐標(biāo);(2)過曲線上任意一點(diǎn)作與夾角為45°的直線,交于點(diǎn),且的最大值為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
設(shè)公差為,由已知可得,進(jìn)而求出的通項(xiàng)公式,即可求解.【詳解】設(shè)公差為,,,,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的基本量計(jì)算以及前項(xiàng)和,屬于基礎(chǔ)題.2、B【解析】
由余弦的二倍角公式化簡函數(shù)為,要想在括號(hào)內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個(gè)單位長度,即為答案.【詳解】由題可知,對(duì)其向左平移個(gè)單位長度后,,其圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱故的最小值為故選:B【點(diǎn)睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運(yùn)用,屬于簡單題.3、D【解析】
如圖所示建立直角坐標(biāo)系,設(shè),則,計(jì)算得到答案.【詳解】如圖所示建立直角坐標(biāo)系,則,,,設(shè),則.當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了向量的計(jì)算,建立直角坐標(biāo)系利用坐標(biāo)計(jì)算是解題的關(guān)鍵.4、B【解析】
根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計(jì)算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點(diǎn)睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.5、C【解析】
由不等式恒成立問題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個(gè)數(shù),綜合①②③得解.【詳解】①當(dāng)時(shí),,滿足題意,②當(dāng)時(shí),,,,,故不恒成立,③當(dāng)時(shí),設(shè),,令,得,,得,下面考查方程的解的個(gè)數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個(gè)使得成立,綜合①②③得:滿足條件的的個(gè)數(shù)是2個(gè),故選:.【點(diǎn)睛】本題考查了不等式恒成立問題及利用導(dǎo)數(shù)研究函數(shù)的解得個(gè)數(shù),重點(diǎn)考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.6、D【解析】
根據(jù)二項(xiàng)式定理通項(xiàng)公式可得常數(shù)項(xiàng),然后二項(xiàng)式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時(shí),常數(shù)項(xiàng)為又展開式的二項(xiàng)式系數(shù)和為由所以當(dāng)時(shí),所以項(xiàng)系數(shù)為故選:D【點(diǎn)睛】本題考查二項(xiàng)式定理通項(xiàng)公式,熟悉公式,細(xì)心計(jì)算,屬基礎(chǔ)題.7、B【解析】
根據(jù)二項(xiàng)式展開式的通項(xiàng)公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開式的通項(xiàng)公式為.則①出,則出,該項(xiàng)為:;②出,則出,該項(xiàng)為:;③出,則出,該項(xiàng)為:;綜上所述:合并后的項(xiàng)的系數(shù)為17.故選:B【點(diǎn)睛】本小題考查二項(xiàng)式定理及展開式系數(shù)的求解方法等基礎(chǔ)知識(shí),考查理解能力,計(jì)算能力,分類討論和應(yīng)用意識(shí).8、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個(gè)單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因?yàn)槊恳粋€(gè)單音與前一個(gè)單音頻率比為,所以,又,則故選D.點(diǎn)睛:此題考查等比數(shù)列的實(shí)際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項(xiàng)公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.9、B【解析】
基本事件總數(shù),能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和只有,,,共有個(gè),根據(jù)古典概型求出概率.【詳解】在不超過的正偶數(shù)中隨機(jī)選取一數(shù),基本事件總數(shù)能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的只有,,,共有個(gè)則它能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的概率是本題正確選項(xiàng):【點(diǎn)睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎(chǔ)題.10、C【解析】
利用復(fù)數(shù)的運(yùn)算法則計(jì)算即可.【詳解】,故虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算以及復(fù)數(shù)的概念,注意復(fù)數(shù)的虛部為,不是,本題為基礎(chǔ)題,也是易錯(cuò)題.11、C【解析】
根據(jù)雙曲線方程求出漸近線方程:,再將點(diǎn)代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.12、D【解析】
由成等差數(shù)列得,利用等比數(shù)列的通項(xiàng)公式展開即可得到公比q的方程.【詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【點(diǎn)睛】本題考查等差等比數(shù)列的綜合,利用等差數(shù)列的性質(zhì)建立方程求q是解題的關(guān)鍵,對(duì)于等比數(shù)列的通項(xiàng)公式也要熟練.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,可行域如圖,直線與圓相切時(shí)取最大值,由14、【解析】
考查更為一般的問題:設(shè)P為橢圓C:上的動(dòng)點(diǎn),為橢圓的兩個(gè)焦點(diǎn),為△PF1F2的內(nèi)心,求點(diǎn)I的軌跡方程.解法一:如圖,設(shè)內(nèi)切圓I與F1F2的切點(diǎn)為H,半徑為r,且F1H=y,F(xiàn)2H=z,PF1=x+y,PF2=x+z,,則.直線IF1與IF2的斜率之積:,而根據(jù)海倫公式,有△PF1F2的面積為因此有.再根據(jù)橢圓的斜率積定義,可得I點(diǎn)的軌跡是以F1F2為長軸,離心率e滿足的橢圓,其標(biāo)準(zhǔn)方程為.解法二:令,則.三角形PF1F2的面積:,其中r為內(nèi)切圓的半徑,解得.另一方面,由內(nèi)切圓的性質(zhì)及焦半徑公式得:從而有.消去θ得到點(diǎn)I的軌跡方程為:.本題中:,代入上式可得軌跡方程為:.15、【解析】
作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【詳解】畫出可行域易知在點(diǎn)處取最小值為.故答案為:【點(diǎn)睛】本題考查簡單線性規(guī)劃的最值,考查數(shù)形結(jié)合思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、【解析】
根據(jù)二項(xiàng)展開式的通項(xiàng)公式即可得結(jié)果.【詳解】解:(2x-1)7的展開式通式為:當(dāng)時(shí),,則.故答案為:【點(diǎn)睛】本題考查求二項(xiàng)展開式指定項(xiàng)的系數(shù),是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)因?yàn)?,可得,即可求得答案;?)分別設(shè)、的斜率為和,切點(diǎn),,可得過點(diǎn)的拋物線的切線方程為:,聯(lián)立直線方程和拋物線方程,得到關(guān)于一元二次方程,根據(jù),求得,,進(jìn)而求得切點(diǎn),坐標(biāo),根據(jù)兩點(diǎn)間距離公式求得,根據(jù)點(diǎn)到直線距離公式求得點(diǎn)到切線的距離,進(jìn)而求得的面積.【詳解】(1),,解得,拋物線的方程為.(2)由題意可知,、的斜率都存在,分別設(shè)為和,切點(diǎn),,過點(diǎn)的拋物線的切線:,由,消掉,可得,,即,解得,,又由,得,,,同理可得,,,,,切線的方程為,點(diǎn)到切線的距離為,,即的面積為.【點(diǎn)睛】本題主要考查了求拋物線方程和拋物線中三角形面積問題,解題關(guān)鍵是掌握拋物線定義和圓錐曲線與直線交點(diǎn)問題時(shí),通常用直線和圓錐曲線聯(lián)立方程組,通過韋達(dá)定理建立起目標(biāo)的關(guān)系式18、(1)(2)【解析】
(1)求出及其導(dǎo)函數(shù),利用研究的單調(diào)性和最值,根據(jù)零點(diǎn)存在定理和零點(diǎn)定義可得的范圍.(2)令,題意說明時(shí),恒成立.同樣求出導(dǎo)函數(shù),由研究的單調(diào)性,通過分類討論可得的單調(diào)性得出結(jié)論.【詳解】解(1)函數(shù)所以討論:①當(dāng)時(shí),無零點(diǎn);②當(dāng)時(shí),,所以在上單調(diào)遞增.取,則又,所以,此時(shí)函數(shù)有且只有一個(gè)零點(diǎn);③當(dāng)時(shí),令,解得(舍)或當(dāng)時(shí),,所以在上單調(diào)遞減;當(dāng)時(shí),所以在上單調(diào)遞增.據(jù)題意,得,所以(舍)或綜上,所求實(shí)數(shù)的取值范圍為.(2)令,根據(jù)題意知,當(dāng)時(shí),恒成立.又討論:①若,則當(dāng)時(shí),恒成立,所以在上是增函數(shù).又函數(shù)在上單調(diào)遞增,在上單調(diào)遞增,所以存在使,不符合題意.②若,則當(dāng)時(shí),恒成立,所以在上是增函數(shù),據(jù)①求解知,不符合題意.③若,則當(dāng)時(shí),恒有,故在上是減函數(shù),于是“對(duì)任意成立”的充分條件是“”,即,解得,故綜上,所求實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查函數(shù)零點(diǎn)問題,考查不等式恒成立問題,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.解題關(guān)鍵是通過分類討論研究函數(shù)的單調(diào)性.本題難度較大,考查掌握轉(zhuǎn)化與化歸思想,考查學(xué)生分析問題解決問題的能力.19、(1)(2)最大值;最小值.【解析】
(1)結(jié)合極坐標(biāo)和直角坐標(biāo)的互化公式可得;(2)利用參數(shù)方程,求解點(diǎn)到直線的距離公式,結(jié)合三角函數(shù)知識(shí)求解最值.【詳解】解:(1)因?yàn)?,代入,可得直線的直角坐標(biāo)方程為.(2)曲線上的點(diǎn)到直線的距離,其中,.故曲線上的點(diǎn)到直線距離的最大值,曲線上的點(diǎn)到直線的距離的最小值.【點(diǎn)睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化及最值問題,橢圓上的點(diǎn)到直線的距離的最值求解優(yōu)先考慮參數(shù)方法,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).20、(1);(2)證明見詳解,【解析】
(1)根據(jù),可得,然后作差,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,用取代,得到新的式子,然后作差,可得結(jié)果,最后根據(jù)等比數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】(1)由①,則②②-①可得:所以(2)由(1)可知:③則④④-③可得:則,且令,則,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列所以【點(diǎn)睛】本題主要考查遞推公式以及之間的關(guān)系的應(yīng)用,考驗(yàn)觀察能力以及分析能力,屬中檔題.21、(1);(2)【解析】
(1)將代入等式,結(jié)合正弦定理將邊化為角,再將及代入,即可求得的值;(2)根據(jù)(1)中的值可求得和,進(jìn)而可得,由三角形面積公式即可求解.【詳解】(1)由,得,由正弦定理將邊化為角可得,∵,∴,∴,化簡可得,∴解得.(2)∵在中,,∴,∴,∴,∴.【點(diǎn)睛】本題考查了正弦定理在邊角轉(zhuǎn)化中的應(yīng)用,正弦差角公式的應(yīng)用,三角形面積公式求法,屬于基礎(chǔ)題.22、(1),;(2)或【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江大學(xué)《全球變化與地表過程》2023-2024學(xué)年第一學(xué)期期末試卷
- 漳州職業(yè)技術(shù)學(xué)院《服裝結(jié)構(gòu)設(shè)計(jì)研究》2023-2024學(xué)年第一學(xué)期期末試卷
- 生產(chǎn)調(diào)度軟件市場(chǎng)競(jìng)爭(zhēng)格局
- 專業(yè)基礎(chǔ)-房地產(chǎn)經(jīng)紀(jì)人《專業(yè)基礎(chǔ)》模擬試卷2
- 房地產(chǎn)交易制度政策-《房地產(chǎn)基本制度與政策》點(diǎn)睛提分卷3
- 先進(jìn)班組長先進(jìn)事跡材料
- 二零二五年電子競(jìng)技俱樂部店鋪?zhàn)赓U合同樣本6篇
- 外研版小學(xué)英語六年級(jí)下冊(cè)小升初一般現(xiàn)在時(shí)專項(xiàng)訓(xùn)練(含答案)
- 信陽農(nóng)林學(xué)院《機(jī)械設(shè)計(jì)基礎(chǔ)2》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年智慧養(yǎng)老項(xiàng)目合同2025版協(xié)議書2篇
- 2024年江蘇省《輔警招聘考試必刷500題》考試題庫帶答案(達(dá)標(biāo)題)
- 高中家長會(huì) 高三上學(xué)期期末家長會(huì)
- 深圳南山區(qū)2024-2025上學(xué)期小學(xué)四年級(jí)數(shù)學(xué)期末試卷
- 藥店員工培訓(xùn)
- 環(huán)衛(wèi)工節(jié)前安全培訓(xùn)
- 李四光《看看我們的地球》原文閱讀
- 2024年全國“紀(jì)檢監(jiān)察”業(yè)務(wù)相關(guān)知識(shí)考試題庫(附含答案)
- DB32T 2305-2013 內(nèi)陸水域魚類資源調(diào)查規(guī)范
- 《陋室銘》(過關(guān)檢測(cè))(原卷版)-2024年中考語文課內(nèi)39篇文言文閱讀
- 福建省福州市2023-2024學(xué)年高一上學(xué)期期末考試物理試卷 附答案
- 檔案業(yè)務(wù)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論