下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
...wd......wd......wd...第二十二講園冪定理相交弦定理、切割線定理、割線定理統(tǒng)稱為圓冪定理.圓冪定理實(shí)質(zhì)上是反映兩條相交直線與圓的位置關(guān)系的性質(zhì)定理,其本質(zhì)是與比例線段有關(guān).相交弦定理、切割線定理、割線定理有著密切的聯(lián)系,主要表達(dá)在:1.用運(yùn)動(dòng)的觀點(diǎn)看,切割線定理、割線定理是相交弦定理另一種情形,即移動(dòng)圓內(nèi)兩條相交弦使其交點(diǎn)在圓外的情況;2.從定理的證明方法看,都是由一對(duì)相似三角形得到的等積式.熟悉以下根本圖形、根本結(jié)論:【例題求解】【例1】如圖,PT切⊙O于點(diǎn)T,PA交⊙O于A、B兩點(diǎn),且與直徑CT交于點(diǎn)D,CD=2,AD=3,BD=6,則PB=.思路點(diǎn)撥綜合運(yùn)用圓冪定理、勾股定理求PB長(zhǎng).注:比例線段是幾何之中一個(gè)重要問題,比例線段的學(xué)習(xí)是一個(gè)由一般到特殊、不斷深化的過程,大致經(jīng)歷了四個(gè)階段:(1)平行線分線段對(duì)應(yīng)成比例;(2)相似三角形對(duì)應(yīng)邊成比例;(3)直角三角形中的比例線段可以用積的形式簡(jiǎn)捷地表示出來;(4)圓中的比例線段通過圓冪定理明快地反映出來.【例2】如圖,在平行四邊形ABCD中,過A、B、C三點(diǎn)的圓交AD于點(diǎn)E,且與CD相切,假設(shè)AB=4,BE=5,則DE的長(zhǎng)為()A.3B.4C.D.思路點(diǎn)撥連AC,CE,由條件可得許多等線段,為切割線定理的運(yùn)用創(chuàng)設(shè)條件.注:圓中線段的算,常常需要綜合相似三角形、直角三角形、圓冪定理等知識(shí),通過代數(shù)化獲解,加強(qiáng)對(duì)圖形的分解,注重信息的重組與整合是解圓中線段計(jì)算問題的關(guān)鍵.【例3】如圖,△ABC內(nèi)接于⊙O,AB是∠O的直徑,PA是過A點(diǎn)的直線,∠PAC=∠B.(1)求證:PA是⊙O的切線;(2)如果弦CD交AB于E,CD的延長(zhǎng)線交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的長(zhǎng)和∠ECB的正切值.思路點(diǎn)撥直徑、切線對(duì)應(yīng)著與圓相關(guān)的豐富知識(shí).(1)問的證明為切割線定理的運(yùn)用創(chuàng)造了條件;引入?yún)?shù)x、k處理(2)問中的比例式,把相應(yīng)線段用是的代數(shù)式表示,并尋找x與k的關(guān)系,建設(shè)x或k的方程.【例4】如圖,P是平行四邊形AB的邊AB的延長(zhǎng)線上一點(diǎn),DP與AC、BC分別交于點(diǎn)E、E,EG是過B、F、P三點(diǎn)圓的切線,G為切點(diǎn),求證:EG=DE思路點(diǎn)撥由切割線定理得EG2=EF·EP,要證明EG=DE,只需證明DE2=EF·EP,這樣通過圓冪定理把線段相等問題的證明轉(zhuǎn)化為線段等積式的證明.注:圓中的許多問題,假設(shè)圖形中有適用圓冪定理的條件,則能化解問題的難度,而圓中線段等積式是轉(zhuǎn)化問題的橋梁.需要注意的是,圓冪定理的運(yùn)用不僅局限于計(jì)算及比例線段的證明,可拓展到平面幾何各種類型的問題中.【例5】如圖,以正方形ABCD的AB邊為直徑,在正方形內(nèi)部作半圓,圓心為O,DF切半圓于點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F,BF=4.求:(1)cos∠F的值;(2)BE的長(zhǎng).思路點(diǎn)撥解決本例的根基是:熟悉圓中常用輔助線的添法(連OE,AE);熟悉圓中重要性質(zhì)定理及角與線段的轉(zhuǎn)化方法.對(duì)于(1),先求出EF,F(xiàn)O值;對(duì)于(2),從△BEF∽△EAF,Rt△AEB入手.注:當(dāng)直線形與圓結(jié)合時(shí)就產(chǎn)生錯(cuò)綜復(fù)雜的圖形,善于分析圖形是解與圓相關(guān)綜合題的關(guān)鍵,分析圖形可從以下方面入手:(1)多視點(diǎn)觀察圖形.如本例從D點(diǎn)看可用切線長(zhǎng)定理,從F點(diǎn)看可用切割線定理.(2)多元素分析圖形.圖中有沒有特殊點(diǎn)、特殊線、特殊三角形、特殊四邊形、全等三角形、相似三角形.(3)將以上分析組合,尋找聯(lián)系.學(xué)力訓(xùn)練1.如圖,PT是⊙O的切線,T為切點(diǎn),PB是⊙O的割線,交⊙O于A、B兩點(diǎn),交弦CD于點(diǎn)M,CM=10,MD=2,PA=MB=4,則PT的長(zhǎng)為.2.如圖,PAB、PCD為⊙O的兩條割線,假設(shè)PA=5,AB=7,CD=11,則AC:BD=.3.如圖,AB是⊙O的直徑,C是AB延長(zhǎng)線上的一點(diǎn),CD是⊙O的切線,D為切點(diǎn),過點(diǎn)B作⊙O的切線交CD于點(diǎn)F,假設(shè)AB=CD=2,則CE=.4.如圖,在△ABC中,∠C=90°,AB=10,AC=6,以AC為直徑作圓與斜邊交于點(diǎn)P,則BP的長(zhǎng)為()A.6.4B.3.2C.3.6D.85.如圖,⊙O的弦AB平分半徑OC,交OC于P點(diǎn),PA、PB的長(zhǎng)分別為方程的兩根,則此圓的直徑為()A.B.C.D.⌒⌒⌒6.如圖,⊙O的直徑Ab垂直于弦CD,垂足為H,點(diǎn)P是AC上一點(diǎn)(點(diǎn)P不與A、C兩點(diǎn)重合),連結(jié)PC、PD、PA、AD,點(diǎn)E在AP的延長(zhǎng)線上,PD與AB交于點(diǎn)F,給出以下四個(gè)結(jié)論:①CH2=AH·BH;②AD=AC:③AD2=DF⌒⌒⌒A.1B.2C.3D.47.如圖,BC是半圓的直徑,O為圓心,P是BC延長(zhǎng)線上一點(diǎn),PA切半圓于點(diǎn)A,AD⊥BC于點(diǎn)D.(1)假設(shè)∠B=30°,問AB與AP是否相等?請(qǐng)說明理由;(2)求證:PD·PO=PC·PB;(3)假設(shè)BD:DC=4:l,且BC=10,求PC的長(zhǎng).8.如圖,PA切⊙O于點(diǎn)A,割線PBC交⊙O于點(diǎn)B、C,PD⊥AB于點(diǎn)D,PD、AO的延長(zhǎng)線相交于點(diǎn)E,連CE并延長(zhǎng)交⊙O于點(diǎn)F,連AF.(1)求證:△PBD∽△PEC;(2)假設(shè)AB=12,tan∠EAF=,求⊙O的半徑的長(zhǎng).9.如圖,AB是⊙O的直徑,PB切⊙O于點(diǎn)B,PA交⊙O于點(diǎn)C,PF分別交AB、BC于E、D,交⊙O于F、G,且BE、BD恰哈好是關(guān)于x的方程(其中為實(shí)數(shù))的兩根.(1)求證:BE=BD;(2)假設(shè)GE·EF=,求∠A的度數(shù).10.如圖,△ABC中,∠C=90°,O為AB上一點(diǎn),以O(shè)為圓心,OB為半徑的圓與AB相交于點(diǎn)E,與AC相切于點(diǎn)D,AD=2,AE=1,那么BC=.11.如圖,A、B、C、D在同一個(gè)圓上,BC=CD,AC與BD交于E,假設(shè)AC=8,CD=4,且線段BE、ED為正整數(shù),則BD=.12.如圖,P是半圓O的直徑BC延長(zhǎng)線上一點(diǎn),PA切半圓于點(diǎn)A,AH⊥BC于H,假設(shè)PA=1,PB+PC=(>2),則PH=()A.B.C.D.13.如圖,△ABC是⊙O的內(nèi)接正三角形,弦EF經(jīng)過BC的中點(diǎn)D,且EF∥AB,假設(shè)AB=2,則DE的長(zhǎng)為()A.B.C.D.114.如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),延長(zhǎng)BC至D,使CD=BC,CE⊥AD于E,BE交⊙O于F,AF交CE于P,求證:PE=PC.15.:如圖,ABCD為正方形,以D點(diǎn)為圓心,AD為半徑的圓弧與以BC為直徑的⊙O相交于P、C兩點(diǎn),連結(jié)AC、AP、CP,并延長(zhǎng)CP、AP分別交AB、BC、⊙O于E、H、F三點(diǎn),連結(jié)OF.(1)求證:△AEP∽△CEA;(2)判斷線段AB與OF的位置關(guān)系,并證明你的結(jié)論;(3)求BH:HC16.如圖,PA、PB是⊙O的兩條切線,PEC是一條割線,D是AB與PC的交點(diǎn),假設(shè)PE=2,CD=1,求DE的長(zhǎng).17.如圖,⊙O的直徑的長(zhǎng)是關(guān)于x的二次方程(是整數(shù))的最大整數(shù)根,P是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人新能源車輛購買還款協(xié)議實(shí)施細(xì)則3篇
- 2025年鐵路接觸網(wǎng)設(shè)備檢修合同3篇
- 2025年度現(xiàn)代風(fēng)格面磚采購及施工合同4篇
- 二零二五版蜜蜂養(yǎng)殖保險(xiǎn)產(chǎn)品定制合作框架協(xié)議4篇
- 私募股權(quán)投資行業(yè)2024年信用回顧與2025年展望 -新世紀(jì)
- 貪吃蛇游戲課程設(shè)計(jì)
- 2024年度快手電商全景洞察-飛瓜-202501
- 初探太陽系模板
- 二零二五版航空航天復(fù)合材料采購預(yù)付款擔(dān)保服務(wù)協(xié)議3篇
- 老師記敘文6篇
- 冬春季呼吸道傳染病防控
- 【物 理】2024-2025學(xué)年八年級(jí)上冊(cè)物理寒假作業(yè)人教版
- 2024年計(jì)算機(jī)二級(jí)WPS考試題庫380題(含答案)
- 中醫(yī)藥膳學(xué)課件
- 教科版二年級(jí)下冊(cè)科學(xué)第一單元測(cè)試卷(含答案)
- 春節(jié)值班安排通知
- 下腔靜脈濾器置入術(shù)共27張課件
- 人教小學(xué)四年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納
- 2022年上海健康醫(yī)學(xué)院職業(yè)適應(yīng)性測(cè)試題庫及答案解析
- 安徽省血液凈化專科護(hù)士臨床培訓(xùn)基地條件
- 腦橋解剖ppt課件
評(píng)論
0/150
提交評(píng)論