【2021屆備考】2020全國名校數(shù)學試題分類解析匯編(12月第一期):K單元-概率_第1頁
【2021屆備考】2020全國名校數(shù)學試題分類解析匯編(12月第一期):K單元-概率_第2頁
【2021屆備考】2020全國名校數(shù)學試題分類解析匯編(12月第一期):K單元-概率_第3頁
【2021屆備考】2020全國名校數(shù)學試題分類解析匯編(12月第一期):K單元-概率_第4頁
【2021屆備考】2020全國名校數(shù)學試題分類解析匯編(12月第一期):K單元-概率_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

K單元概率名目K單元概率 1\l"_Toc396208097"K1隨大事的概率 1K2古典概型 2\l"_Toc396208099"K3幾何概型 2K4互斥大事有一個發(fā)生的概率 4\l"_Toc396208101"K5相互對立大事同時發(fā)生的概率 2K6離散型隨機變量及其分布列 4\l"_Toc396208103"K7條件概率與大事的獨立性 2K8離散型隨機變量的數(shù)字特征與正態(tài)分布 4\l"_Toc396208105"K9單元綜合 2K1隨大事的概率【數(shù)學理卷·2021屆四川省成都外國語學校高三11月月考(202211)(1)】19.(12分)某重點高校自主招生考試過程依次為自薦材料審查、筆試、面試共三輪考核。規(guī)定:只能通過前一輪考核才能進入下一輪的考核,否則將被淘汰;三輪考核都通過才算通過該高校的自主招生考試。同學甲三輪考試通過的概率分別為,,,且各輪考核通過與否相互獨立。

(1)求甲通過該高校自主招生考試的概率;

(2)若同學甲每通過一輪考核,則家長嘉獎人民幣1000元作為高校學習的訓練基金。記同學甲得到訓練基金的金額為,求的分布列和數(shù)學期望?!緦W問點】概率;分布列與數(shù)學期望.K1,K6【答案】【解析】(1)(2)的分布列為數(shù)學期望為--解析:(1)設(shè)“同學甲通過該高校自主招生考試”為大事A,則P(A)=所以同學甲通過該高校自主招生考試的概率為4分(2)的可能取值為0元,1000元,2000元,3000元5分,,9分所以,的分布列為數(shù)學期望為12分【思路點撥】由題意可求出變量取各值時的概率,再列出分布列,依據(jù)公式求出數(shù)學期望即可.【數(shù)學理卷·2021屆吉林省長春外國語學校高三上學期期中考試(202211)】13.袋中有三個白球,兩個黑球,現(xiàn)每次摸出一個球,不放回的摸取兩次,則在第一次摸到黑球的條件下,其次次摸到白球的概率為_____________.【學問點】隨大事的概率K1【答案解析】記大事A為“第一次取到黑球”,大事B為“其次次取到白球”,

則大事AB為“第一次取到黑球、其次次取到白球”,依題意知P(A)=,P(AB)=×,

∴在第一次取到黑球的條件下,其次次取到白球的概率是P(B|A)=.

故答案為:.【思路點撥】本題條件概率,需要做出第一次取到黑球的概率和第一次取到黑球、其次次取到白球的概率,依據(jù)條件概率的公式,代入數(shù)據(jù)得到結(jié)果.K2古典概型【數(shù)學理卷·2021屆湖南省瀏陽一中、攸縣一中、醴陵一中三校高三聯(lián)考(202211)】17.(本題滿分12分)在一個盒子中,放有大小相同的紅、白、黃三個小球,現(xiàn)從中任意摸出一球,若是紅球記1分,白球記2分,黃球記3分.現(xiàn)從這個盒子中,有放回地先后摸出兩球,所得分數(shù)分別記為、,設(shè)為坐標原點,點的坐標為,記.(I)求隨機變量的最大值,并求大事“取得最大值”的概率;(Ⅱ)求隨機變量的分布列和數(shù)學期望.【學問點】古典概型;離散型隨機變量的分布列;數(shù)學期望.K2K6K8【答案】【解析】(I)的最大值為,取得最大值的概率;(Ⅱ)則隨機變量的分布列為:…數(shù)學期望為2.解析:(I)、可能的取值為、、,………1分,,,且當或時,.因此,隨機變量的最大值為………………3分有放回摸兩球的全部狀況有種……6分(Ⅱ)的全部取值為.時,只有這一種狀況.時,有或或或四種狀況,時,有或兩種狀況.,,………………8分則隨機變量的分布列為:………………10分因此,數(shù)學期望………………12分【思路點撥】(I)的表達式為,數(shù)組(x,y)有9個,且x、取值為、、,將x、y的取值代入的表達式得的最大值,據(jù)此可得取得最大值的概率;(Ⅱ)由(I)的方法可得的所以取值和取各值的概率,從而求得的分布列和數(shù)學期望.【數(shù)學文卷·2021屆四川省成都外國語學校高三11月月考(202211)】19.(12分)新一屆中心領(lǐng)導集體格外重視勤儉節(jié)省,從“光盤行動”到“節(jié)省辦春晚”。到飯店吃飯是吃光盤子或是打包帶走,稱為“光盤族”,否則稱為“非光盤族”,政治課上政治老師選派幾位同學組成爭辯性小組,從某社區(qū)[25,55]歲的人群中隨機抽取人進行了一次調(diào)查,得到如下統(tǒng)計表:組數(shù)分組頻數(shù)頻率光盤族占本組比例第1組[25,30)500.0530%第2組[30,35)1000.1030%第3組[35,40)1500.1540%第4組[40,45)2000.2050%第5組[45,50)ab65%第6組[50,55)2000.2060%(1)求的值,并估量本社區(qū)[25,55)歲的人群中“光盤族”所占比例;(2)從年齡段在[35,45)的“光盤族”中接受分層抽樣方法抽取8人參與節(jié)省糧食宣揚活動,并從這8人中選取2人作為領(lǐng)隊.求選取的2名領(lǐng)隊分別來自[35,40)與[40,45)兩個年齡段的概率?!緦W問點】用樣本估量總體;古典概型.I2K2【答案】【解析】(1)a=300,b=0.30;(2).解析:解:(1)……1分…2分………3分樣本中的“光盤族”人數(shù)為:…5分樣本中的“光盤族”所占的比例為:…………6分(2)年齡段在的“光盤族”的人數(shù)為人,年齡段在的“光盤族”人數(shù)為人,接受分層抽樣方法抽取8人中的“光盤族”有3人,在的有5人,記中的3人為,的5人記為,則選取2人做領(lǐng)隊有共28種…………10分其中分別來自與兩個年齡段的有:共15種……11分所以分別來自與兩個年齡段的概率…………12分【思路點撥】(1)由,,;(2)先求出抽取的8人中,的“光盤族”有3人,的有5人,再用列舉法寫出從這8人中任取2人的全部狀況,共28種,其中,分別來自與兩個年齡段的有11種,由此得所求概率.K3幾何概型【數(shù)學文卷·2021屆湖南省瀏陽一中、攸縣一中、醴陵一中三校高三聯(lián)考(202211)】8、一只受傷的丹頂鶴在如圖所示(直角梯形)的草原上飛過,其中,它可能隨機在草原上任何一處(點),若落在扇形沼澤區(qū)域ADE以外丹頂鶴能生還,則該丹頂鶴生還的概率是()A.B.C.D.【學問點】概率K3【答案】【解析】B解析:過點作于點,在中,易知,梯形的面積,扇形的面積,則丹頂鶴生還的概率,故選【思路點撥】幾何概型,可分別求出各部分的面積再求出概率.【數(shù)學文卷·2021屆四川省成都外國語學校高三11月月考(202211)】8.已知菱形的邊長為4,,若在菱形內(nèi)任取一點,則該點到菱形的四個頂點的距離大于1的概率()A.B.C.D.【學問點】幾何概型.K3【答案】【解析】D解析:以A、B、C、D為圓心1為半徑的圓在菱形內(nèi)的面積為:,(任意兩圓相離),而菱形的面積為8,所以所求概率為,故選D.【思路點撥】先求菱形中,到點A、B、C、D的某一個點的距離小于1的點構(gòu)成圖像的面積,然后利用幾何概型求得概率.K4互斥大事有一個發(fā)生的概率K5相互對立大事同時發(fā)生的概率K6離散型隨機變量及其分布列【數(shù)學理卷·2021屆湖南省瀏陽一中、攸縣一中、醴陵一中三校高三聯(lián)考(202211)】17.(本題滿分12分)在一個盒子中,放有大小相同的紅、白、黃三個小球,現(xiàn)從中任意摸出一球,若是紅球記1分,白球記2分,黃球記3分.現(xiàn)從這個盒子中,有放回地先后摸出兩球,所得分數(shù)分別記為、,設(shè)為坐標原點,點的坐標為,記.(I)求隨機變量的最大值,并求大事“取得最大值”的概率;(Ⅱ)求隨機變量的分布列和數(shù)學期望.【學問點】古典概型;離散型隨機變量的分布列;數(shù)學期望.K2K6K8【答案】【解析】(I)的最大值為,取得最大值的概率;(Ⅱ)則隨機變量的分布列為:…數(shù)學期望為2.解析:(I)、可能的取值為、、,………1分,,,且當或時,.因此,隨機變量的最大值為………………3分有放回摸兩球的全部狀況有種……6分(Ⅱ)的全部取值為.時,只有這一種狀況.時,有或或或四種狀況,時,有或兩種狀況.,,………………8分則隨機變量的分布列為:………………10分因此,數(shù)學期望………………12分【思路點撥】(I)的表達式為,數(shù)組(x,y)有9個,且x、取值為、、,將x、y的取值代入的表達式得的最大值,據(jù)此可得取得最大值的概率;(Ⅱ)由(I)的方法可得的所以取值和取各值的概率,從而求得的分布列和數(shù)學期望.【數(shù)學理卷·2021屆江西省贛州市十二縣(市)高三上學期期中聯(lián)考(202211)】18.(本小題滿分12分)2022年巴西世界杯的周邊商品有80%左右為“中國制造”,全部的廠家都是經(jīng)過層層篩選才能獲此殊榮。甲、乙兩廠生產(chǎn)同一產(chǎn)品,為了解甲、乙兩廠的產(chǎn)品質(zhì)量,以確定這一產(chǎn)品最終的供貨商,接受分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽出取14件和5件,測量產(chǎn)品中的微量元素的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;(2)當產(chǎn)品中的微量元素滿足,且,該產(chǎn)品為優(yōu)等品。用上述樣本數(shù)據(jù)估量乙廠生產(chǎn)的優(yōu)等品的數(shù)量;(3)從乙廠抽出的上述5件產(chǎn)品中,隨機抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及其均值(即數(shù)學期望)?!緦W問點】離散型隨機變量的期望與方差;離散型隨機變量及其分布列.K6【答案】【解析】(1)35(2)14(3)解析:(1)乙廠生產(chǎn)的產(chǎn)品總數(shù)為;…2分(2)樣品中優(yōu)等品的頻率為,乙廠生產(chǎn)的優(yōu)等品的數(shù)量為;…………4分(3),……5分,……8分的分布列為………………11分均值…12分【思路點撥】(1)利用分層抽樣方法能求出乙廠生產(chǎn)的產(chǎn)品總數(shù).(2)樣品中優(yōu)等品的頻率為,由分層抽樣方法能求出乙廠生產(chǎn)的優(yōu)等品的數(shù)量.(3)由題意知ξ=0,1,2,分別求出相應(yīng)的概率,由此能求出抽取的2件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及其均值.【數(shù)學理卷·2021屆四川省成都外國語學校高三11月月考(202211)(1)】19.(12分)某重點高校自主招生考試過程依次為自薦材料審查、筆試、面試共三輪考核。規(guī)定:只能通過前一輪考核才能進入下一輪的考核,否則將被淘汰;三輪考核都通過才算通過該高校的自主招生考試。同學甲三輪考試通過的概率分別為,,,且各輪考核通過與否相互獨立。

(1)求甲通過該高校自主招生考試的概率;

(2)若同學甲每通過一輪考核,則家長嘉獎人民幣1000元作為高校學習的訓練基金。記同學甲得到訓練基金的金額為,求的分布列和數(shù)學期望?!緦W問點】概率;分布列與數(shù)學期望.K1,K6【答案】【解析】(1)(2)的分布列為數(shù)學期望為--解析:(1)設(shè)“同學甲通過該高校自主招生考試”為大事A,則P(A)=所以同學甲通過該高校自主招生考試的概率為4分(2)的可能取值為0元,1000元,2000元,3000元5分,,9分所以,的分布列為數(shù)學期望為12分【思路點撥】由題意可求出變量取各值時的概率,再列出分布列,依據(jù)公式求出數(shù)學期望即可.【數(shù)學理卷·2021屆吉林省長春外國語學校高三上學期期中考試(202211)】18.(12分)某站針對2022年中國好聲音歌手三人進行上投票,結(jié)果如下觀眾年齡支持支持支持20歲以下20040080020歲以上(含20歲)100100400(1)在全部參與該活動的人中,用分層抽樣的方法抽取人,其中有6人支持,求的值.(2)若在參與活動的20歲以下的人中,用分層抽樣的方法抽取7人作為一個總體,從7人中任意抽取3人,用隨機變量表示抽取出3人中支持的人數(shù),寫出的分布列并計算.【學問點】離散型隨機變量及其分布列K6【答案解析】(1)40(2)(1)∵利用層抽樣的方法抽取n個人時,從“支持A方案”的人中抽取了6人,

∴=,解得n=40,

(2)X=0,1,2X012P274717∴E(X)=1×+2×=,D(X)=×(0-)2+×(1-)2+×(2-)2=.【思路點撥】(1)依據(jù)分層抽樣時,各層的抽樣比相等,結(jié)合已知構(gòu)造關(guān)于n的方程,解方程可得n值.

(2)X=0,1,2,求出相應(yīng)的概率,可得X的分布列并計算E(X),D(X).【數(shù)學文卷·2021屆吉林省長春外國語學校高三上學期期中考試(202211)】18.(12分)某站針對2022年中國好聲音歌手三人進行上投票,結(jié)果如下觀眾年齡支持支持支持20歲以下20040080020歲以上(含20歲)100100400(1)在全部參與該活動的人中,用分層抽樣的方法抽取人,其中有6人支持,求的值.(2)在支持的人中,用分層抽樣的方法抽取6人作為一個總體,從這6人中任意選取2人,求恰有1人在20歲以下的概率.【學問點】離散型隨機變量及其分布列K6【答案解析】(1)40(2)(2)(1)∵利用層抽樣的方法抽取n個人時,從“支持A方案”的人中抽取了6人,

∴=,解得n=40,

(2)從“支持C方案”的人中,用分層抽樣的方法抽取的6人中,

年齡在20歲以下的有4人,分別記為1,2,3,4,年齡在20歲以上(含20歲)的有2人,記為a,b則這6人中任意選取2人,共有=15種不同狀況,分別為:(1,2),(1,3),(1,4),(1,a),(1,b),(2,3),(2,4),(2,a),(2,b),(3,4),(3,a),(3,b),(4,a),(4,b),(a,b),

其中恰好有1人在20歲以下的大事有:,(1,a),(1,b),(2,a),(2,b),(3,a),(3,b),(4,a),(4,b)共8種.故恰有1人在20歲以下的概率P=.【思路點撥】(1)依據(jù)分層抽樣時,各層的抽樣比相等,結(jié)合已知構(gòu)造關(guān)于n的方程,解方程可得n值.

(2)計算出這6人中任意選取2人的狀況總數(shù),及滿足恰有1人在20歲以下的狀況數(shù),代入古典概率概率計算公式,可得答案K7條件概率與大事的獨立性K8離散型隨機變量的數(shù)字特征與正態(tài)分布【數(shù)學理卷·2021屆湖南省瀏陽一中、攸縣一中、醴陵一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論