2025年蘇人新版高一數(shù)學(xué)下冊階段測試試卷_第1頁
2025年蘇人新版高一數(shù)學(xué)下冊階段測試試卷_第2頁
2025年蘇人新版高一數(shù)學(xué)下冊階段測試試卷_第3頁
2025年蘇人新版高一數(shù)學(xué)下冊階段測試試卷_第4頁
2025年蘇人新版高一數(shù)學(xué)下冊階段測試試卷_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年蘇人新版高一數(shù)學(xué)下冊階段測試試卷679考試試卷考試范圍:全部知識點(diǎn);考試時間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共5題,共10分)1、已知則的大小關(guān)系是()A.B.C.D.2、方程的解所在的區(qū)間為()

A.(0;1)

B.(1;2)

C.(2;3)

D.[1;4]

3、下列圖象中不能作為函數(shù)圖象的是()ABCD4、長方體ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5則三棱錐A1-ABC的體積為()

A.10

B.20

C.30

D.35

5、【題文】對于定義在R上的奇函數(shù)A.0B.—1C.3D.2評卷人得分二、填空題(共6題,共12分)6、甲;乙兩超市(大型商場)同時開業(yè);為了吸引顧客,都舉行有獎酬賓活動:凡購物滿100元,均可得到一次摸獎的機(jī)會.在一個紙盒里裝有2個紅球和2個白球,除顏色外其它都相同,摸獎?wù)咭淮螐闹忻鰞蓚€球,根據(jù)球的顏色決定送禮金券(在他們超市使用時,與人民幣等值)的多少(如下表).

甲超市:

。球兩紅一紅一白兩白禮金券(元)5105乙超市:

。球兩紅一紅一白兩白禮金券(元)10510如果只考慮中獎因素,你將會選擇去____超市購物.請說明理由____.7、直線5x-2y-10=0在y軸上的截距為____。8、【題文】設(shè)且則____;

____.9、已知定義在[-2,2]上的函數(shù)f(x),當(dāng)x∈[-2,2]都滿足f(-x)=f(x),且對于任意的a,b∈[0,2],都有<0(a≠b),若f(1-m)<f(m),則實(shí)數(shù)m的取值范圍為______.10、函數(shù)f(x)=|x+1|的單調(diào)遞增區(qū)間為______.11、直線ax鈭?2y+2=0

與直線x+(a鈭?3)y+1=0

平行,則實(shí)數(shù)a

的值為______.評卷人得分三、計算題(共8題,共16分)12、解分式方程:.13、(模擬改編)如圖;在△ABC中,∠B=36°,D為BC上的一點(diǎn),AB=AC=BD=1.

(1)求DC的長;

(2)利用此圖,求sin18°的精確值.14、已知關(guān)于x的方程|x|=ax-a有正根且沒有負(fù)根,求a的取值范圍.15、分解因式:

(1)2x3-8x=____

(2)x3-5x2+6x=____

(3)4x4y2-5x2y2-9y2=____

(4)3x2-10xy+3y2=____.16、已知(a>b>0)是方程x2-5x+2=0的兩個實(shí)根,求的值.17、分別求所有的實(shí)數(shù)k,使得關(guān)于x的方程kx2+(k+1)x+(k-1)=0

(1)有實(shí)根;

(2)都是整數(shù)根.18、計算:

①﹣()﹣(π+e)0+()

②2lg5+lg4+ln.19、求值:log23?log34+(log224﹣log26+6).評卷人得分四、作圖題(共3題,共6分)20、作出下列函數(shù)圖象:y=21、以下是一個用基本算法語句編寫的程序;根據(jù)程序畫出其相應(yīng)的程序框圖.

22、繪制以下算法對應(yīng)的程序框圖:

第一步;輸入變量x;

第二步,根據(jù)函數(shù)f(x)=

對變量y賦值;使y=f(x);

第三步,輸出變量y的值.評卷人得分五、綜合題(共4題,共24分)23、拋物線y=ax2+bx+c(a≠0)過點(diǎn)A(1;-3),B(3,-3),C(-1,5),頂點(diǎn)為M點(diǎn).

(1)求該拋物線的解析式.

(2)試判斷拋物線上是否存在一點(diǎn)P;使∠POM=90°.若不存在,說明理由;若存在,求出P點(diǎn)的坐標(biāo).

(3)試判斷拋物線上是否存在一點(diǎn)K,使∠OMK=90°,若不存在,說明理由;若存在,求出K點(diǎn)的坐標(biāo).24、如圖,直線y=-x+b與兩坐標(biāo)軸分別相交于A;B兩點(diǎn);以O(shè)B為直徑作⊙C交AB于D,DC的延長線交x軸于E.

(1)寫出A、B兩點(diǎn)的坐標(biāo)(用含b的代數(shù)式表示);并求tanA的值;

(2)如果AD=4,求b的值;

(3)求證:△EOD∽△EDA,并在(2)的情形下,求出點(diǎn)E的坐標(biāo).25、如圖,直線y=-x+b與兩坐標(biāo)軸分別相交于A;B兩點(diǎn);以O(shè)B為直徑作⊙C交AB于D,DC的延長線交x軸于E.

(1)寫出A、B兩點(diǎn)的坐標(biāo)(用含b的代數(shù)式表示);并求tanA的值;

(2)如果AD=4,求b的值;

(3)求證:△EOD∽△EDA,并在(2)的情形下,求出點(diǎn)E的坐標(biāo).26、已知△ABC的一邊AC為關(guān)于x的一元二次方程x2+mx+4=0的兩個正整數(shù)根之一,且另兩邊長為BC=4,AB=6,求cosA.參考答案一、選擇題(共5題,共10分)1、D【分析】【解析】試題分析:因?yàn)樗钥键c(diǎn):指數(shù)函數(shù)的單調(diào)性;對數(shù)函數(shù)的單調(diào)性?!窘馕觥俊敬鸢浮緿2、C【分析】

令f(x)=-lgx;

則f(1)=1-0>0,f(2)=-lg2>0,f(3)=-lg3<0,f(4)=-lg4<0

∴方程-lgx=0在區(qū)間(2;3)上必有根;

故選:C.

【解析】【答案】根據(jù)題意,結(jié)合選項,令f(x)=-lgx;分別求f(1),f(2),f(3),f(4)看與0的大小關(guān)系,即可判斷.

3、B【分析】試題分析:根據(jù)函數(shù)的定義給自變量x一個值,y必須有唯一的值與之相對應(yīng),對于B給自變量x一個正值,y兩個值與之相對應(yīng),所以不能作為函數(shù)圖象考點(diǎn):函數(shù)的概念【解析】【答案】B4、A【分析】

如圖,三棱錐A1-ABC的體積為;

V=?S△ABC?h=??AB?BC?AA1=××3×4×5=10.

故答案為A.

【解析】【答案】由長方體ABCD-A1B1C1D1,可直接得出三棱錐A1-ABC的高AA1和底面三角形ABC的邊長;從而計算出體積.

5、A【分析】【解析】

試題分析:由定義在R上的奇函數(shù)f(x)可得f(0)=0.又有f(x+3)=f(x),令x=-3即可得f(0)=f(-3)=-f(3)=0.所以f(3)=0.又令x=-1由f(x+3)=f(x)可得.f(2)=f(-1),所以f(2)+f(1)=0.綜上所以f(1)+f(2)+f(3)=0.故選A.

考點(diǎn):1.奇函數(shù)的性質(zhì).2.函數(shù)的周期性.3.特值法的應(yīng)用.【解析】【答案】A二、填空題(共6題,共12分)6、略

【分析】【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩紅或兩白與一紅一白的情況,則可求得其概率,再根據(jù)錢數(shù),求得平均獲得的禮金券錢數(shù),比較即可求得答案.【解析】【解答】解:畫樹狀圖得:

∵共有12種等可能的結(jié)果;兩紅或兩白的有4種情況,一紅一白的有8種情況;

∴P(兩紅或兩白)==,P(一紅一白)==;

∴甲超市:×5+×10=(元);乙超市:×10+×5=(元);

∴你將會選擇去甲超市購物;因?yàn)榧壮衅骄@得的禮金券錢數(shù)多.

故答案為:甲,甲超市平均獲得的禮金券錢數(shù)多.7、略

【分析】【解析】試題分析:直線中令得所以在y軸上的截距為考點(diǎn):截距的概念【解析】【答案】-58、略

【分析】【解析】略【解析】【答案】9、略

【分析】解:由題意;函數(shù)f(x)在[-2,2]上是偶函數(shù),且單調(diào)遞減;

∵f(1-m)<f(m);

∴f(|1-m|)<f(|m|);

∴-2≤|m|<|1-m|≤2;

∴-1≤m<

故答案為-1≤m<.

由題意;函數(shù)f(x)在[-2,2]上是偶函數(shù),且單調(diào)遞減,由f(1-m)<f(m),得f(|1-m|)<f(|m|),從而-2≤|m|<|1-m|≤2,即可求出實(shí)數(shù)m的取值范圍.

本題考查函數(shù)單調(diào)性與奇偶性的綜合,考查學(xué)生解不等式的能力,屬于中檔題.【解析】-1≤m<10、略

【分析】解:函數(shù)y=|x+1|的圖象是由函數(shù)y=|x|的圖象向左平移1個單位得到的.

有函數(shù)的性質(zhì)易知;函數(shù)y=|x|的單調(diào)增區(qū)間是[0,+∞);

所以函數(shù)y=|x+1|的單調(diào)增區(qū)間是[-1;+∞).

故答案為:[-1;+∞).

易知函數(shù)y=|x|的單調(diào)區(qū)間;再根據(jù)函數(shù)函數(shù)y=|x+1|和y=|x|圖象之間的關(guān)系,容易得到答案.

考查從圖象變換和數(shù)形結(jié)合的角度解決問題的能力.是基礎(chǔ)題.【解析】[-1,+∞)11、略

【分析】解:直線ax鈭?2y+2=0

與直線x+(a鈭?3)y+1=0

平行;

隆脿a1=鈭?2a鈭?3鈮?21

解得a=1

故答案為1

利用兩直線平行的條件;一次項系數(shù)之比相等,但不等于常數(shù)項之比,求得實(shí)數(shù)a

的值.

本題考查兩直線平行的條件,利用一次項系數(shù)之比相等,但不等于常數(shù)項之比,求得實(shí)數(shù)a

的值.【解析】1

三、計算題(共8題,共16分)12、略

【分析】【分析】先去分母得到整式方程2x2+5x-7=x(x-1),再整理后解整式方程得到x1=-7,x2=1,然后進(jìn)行檢驗(yàn),把x1=-7,x2=1分別代入x(x-1)中計算得到x=1時,x(x-1)=0;x=-7時,x(x-1)≠0,即可得到原方程的解.【解析】【解答】解:方程兩邊同時乘以x(x-1),得2x2+5x-7=x(x-1);

整理得x2+6x-7=0;即(x+7)(x-1)=0;

解得x1=-7,x2=1;

經(jīng)檢驗(yàn);x=-7是原方程的解;x=1是原方程的增根;

所以原方程的解是x=-7.13、略

【分析】【分析】(1)利用已知條件可以證明△ADC∽△BAC;再利用其對應(yīng)邊成比例即可求出CD的長.

(2)作AD的高,可將所求角的值轉(zhuǎn)化在直角三角形中求出.【解析】【解答】解:(1)∵∠B=36°;AB=AC=BD=1;

∴∠C=36°;∠BDA=∠BAD=72°,∠DAC=36°;

∴∠DAC=∠B;∠C=∠C;

∴△ADC∽△BAC;

∴=;

即DC×(DC+1)=1;

∴DC1=,DC2=(舍去);

∴DC=;

(2)過點(diǎn)B作BE⊥AD,交AD于點(diǎn)E,

∵AB=BD=1;

∴∠ABE=18°,AE=DE=AD

∵∠DAC=∠C;

∴DC=AD=2DE=;

∴sin18°==.14、略

【分析】【分析】根據(jù)絕對值的性質(zhì)和方程|x|=ax-a有正根且沒有負(fù)根,確定a的取值范圍.【解析】【解答】解:∵關(guān)于x的方程|x|=ax-a有正根且沒有負(fù)根;

∴x>0;則x=ax-a;

∴x=.

∴>0

解得,a>1.15、略

【分析】【分析】(1)原式提取2x;再利用平方差公式分解即可;

(2)原式提取x;再利用十字相乘法分解即可;

(3)原式提取公因式;再利用平方差公式分解即可;

(4)原式利用十字相乘法分解即可.【解析】【解答】解:(1)原式=2x(x2-4)=2x(x+2)(x-2);

(2)原式=x(x2-5x+6)=x(x-3)(x-2);

(3)原式=y2(4x4-5x2-9)=y2(4x2-9)(x2+1)=y2(2x+3)(2x-3)(x2+1);

(4)原式=(3x-y)(x-3y);

故答案為:(1)2x(x+2)(x-2);(2)x(x-3)(x-2);(3)y2(2x+3)(2x-3)(x2+1);(4)(3x-y)(x-3y)16、略

【分析】【分析】先把方程的兩根代入程x2-5x+2=0,根據(jù)根與系數(shù)的關(guān)系得出+、的值,然后再代入求的值即可.【解析】【解答】解:∵是方程x2-5x+2=0的兩實(shí)根;

∴a-5+2=0;

∴b-5+2=0,+=5,=2.

∴原式=[]÷+

=+=+=2?=2?=517、略

【分析】【分析】(1)分類討論:當(dāng)k=0,方程變?yōu)椋簒-1=0,解得x=1;當(dāng)k≠0,△=(k+1)2-4×k×(k-1)=-3k2+6k+1,則-3k2+6k+1≥0,利用二次函數(shù)的圖象解此不等式得≤k≤;最后綜合得到當(dāng)≤k≤時;方程有實(shí)數(shù)根;

(2)分類討論:當(dāng)k=0,方程變?yōu)椋簒-1=0,解得方程有整數(shù)根為x=1;當(dāng)k≠0,△=(k+1)2-4×k×(k-1)=-3k2+6k+1=-3(k-1)2+4,要使一元二次方程都是整數(shù)根,則△必須為完全平方數(shù),得到k=1,2,-,k=1±;然后利用求根公式分別求解即可得到k=1、2、-時方程的解都為整數(shù).【解析】【解答】解:(1)當(dāng)k=0;方程變?yōu)椋簒-1=0,解得x=1;

當(dāng)k≠0,△=(k+1)2-4×k×(k-1)=-3k2+6k+1;

當(dāng)△≥0,即-3k2+6k+1≥0,方程有兩個實(shí)數(shù)根,解得≤k≤;

∴當(dāng)≤k≤時;方程有實(shí)數(shù)根;

(2)當(dāng)k=0;方程變?yōu)椋簒-1=0,解得方程有整數(shù)根為x=1;

當(dāng)k≠0,△=(k+1)2-4×k×(k-1)=-3k2+6k+1=-3(k-1)2+4;

一元二次方程都是整數(shù)根;則△必須為完全平方數(shù);

∴當(dāng)△=4,則k=1;當(dāng)△=1,則k=2;當(dāng)△=時,k=-;當(dāng)△=0,則k=1±;

而x=;

當(dāng)k=1;解得x=0或-2;

當(dāng)k=2,解得x=-或-1;

當(dāng)k=-;解得x=2或4;

當(dāng)k=1±;解得x都不為整數(shù),并且k為其它數(shù)△為完全平方數(shù)時,解得x都不為整數(shù).

∴當(dāng)k為0、1、-時方程都是整數(shù)根.18、解:①﹣()﹣(π+e)0+()

=﹣﹣1+2

=2.

②2lg5+lg4+ln

=lg25+lg4+

=lg100+

=【分析】【分析】利用指數(shù)和對數(shù)的運(yùn)算性質(zhì)和運(yùn)算法則求解.19、解:原式=+=2+

=2+

=6.【分析】【分析】利用對數(shù)的運(yùn)算法則、指數(shù)冪的運(yùn)算性質(zhì)即可得出.四、作圖題(共3題,共6分)20、【解答】冪函數(shù)y={#mathml#}x32

{#/mathml#}的定義域是[0;+∞),圖象在第一象限,過原點(diǎn)且單調(diào)遞增,如圖所示;

【分析】【分析】根據(jù)冪函數(shù)的圖象與性質(zhì),分別畫出題目中的函數(shù)圖象即可.21、解:程序框圖如下:

【分析】【分析】根據(jù)題目中的程序語言,得出該程序是順序結(jié)構(gòu),利用構(gòu)成程序框的圖形符號及其作用,即可畫出流程圖.22、解:程序框圖如下:

【分析】【分析】該函數(shù)是分段函數(shù),當(dāng)x取不同范圍內(nèi)的值時,函數(shù)解析式不同,因此當(dāng)給出一個自變量x的值時,必須先判斷x的范圍,然后確定利用哪一段的解析式求函數(shù)值,因?yàn)楹瘮?shù)解析式分了三段,所以判斷框需要兩個,即進(jìn)行兩次判斷,于是,即可畫出相應(yīng)的程序框圖.五、綜合題(共4題,共24分)23、略

【分析】【分析】(1)將A(1,-3),B(3,-3),C(-1,5)三點(diǎn)坐標(biāo)代入y=ax2+bx+c中,列方程組求a、b;c的值;得出拋物線解析式;

(2)拋物線上存在一點(diǎn)P,使∠POM=90?.設(shè)(a,a2-4a);過P點(diǎn)作PE⊥y軸,垂足為E;過M點(diǎn)作MF⊥y軸,垂足為F,利用互余關(guān)系證明Rt△OEP∽Rt△MFO,利用相似比求a即可;

(3)拋物線上必存在一點(diǎn)K,使∠OMK=90?.過頂點(diǎn)M作MN⊥OM,交y軸于點(diǎn)N,在Rt△OMN中,利用互余關(guān)系證明△OFM∽△MFN,利用相似比求N點(diǎn)坐標(biāo),再求直線MN解析式,將直線MN解析式與拋物線解析式聯(lián)立,可求K點(diǎn)坐標(biāo).【解析】【解答】解:(1)根據(jù)題意,得,解得;

∴拋物線的解析式為y=x2-4x;

(2)拋物線上存在一點(diǎn)P;使∠POM=90?.

x=-=-=2,y===-4;

∴頂點(diǎn)M的坐標(biāo)為(2;-4);

設(shè)拋物線上存在一點(diǎn)P,滿足OP⊥OM,其坐標(biāo)為(a,a2-4a);

過P點(diǎn)作PE⊥y軸;垂足為E;過M點(diǎn)作MF⊥y軸,垂足為F.

則∠POE+∠MOF=90?;∠POE+∠EPO=90?.

∴∠EPO=∠FOM.

∵∠OEP=∠MFO=90?;

∴Rt△OEP∽Rt△MFO.

∴OE:MF=EP:OF.

即(a2-4a):2=a:4;

解得a1=0(舍去),a2=;

∴P點(diǎn)的坐標(biāo)為(,);

(3)過頂點(diǎn)M作MN⊥OM;交y軸于點(diǎn)N.則∠FMN+∠OMF=90?.

∵∠MOF+∠OMF=90?;

∴∠MOF=∠FMN.

又∵∠OFM=∠MFN=90?;

∴△OFM∽△MFN.

∴OF:MF=MF:FN.即4:2=2:FN.∴FN=1.

∴點(diǎn)N的坐標(biāo)為(0;-5).

設(shè)過點(diǎn)M,N的直線的解析式為y=kx+b,則;

解得,∴直線的解析式為y=x-5;

聯(lián)立得x2-x+5=0,解得x1=2,x2=;

∴直線MN與拋物線有兩個交點(diǎn)(其中一點(diǎn)為頂點(diǎn)M).

另一個交點(diǎn)K的坐標(biāo)為(,-);

∴拋物線上必存在一點(diǎn)K,使∠OMK=90?.坐標(biāo)為(,-).24、略

【分析】【分析】(1)在解析式中分別令x=0與y=0;即可求得直線與y軸,x軸的交點(diǎn)坐標(biāo),即可求得OA,OB的長度,進(jìn)而求得正切值;

(2)利用切割線定理,可以得到OA2=AD?AB,據(jù)此即可得到一個關(guān)于b的方程,從而求得b的值;

(3)利用兩角對應(yīng)相等的兩個三角形相似即可證得兩個三角形相似.【解析】【解答】解:(1)∵當(dāng)x=0時,y=b,當(dāng)y=0時,x=2b;

∴A(2b,0),B(0,b)

∴tanA===;

(2)AB===b

由OA2=AD?AB,得(2b)2=4?b,解得b=5;

(3)∵OB是直徑;

∴∠BDO=90°;

則∠ODA=90°

∴∠EOC=∠ODA=90°;

又∵OC=CD

∴∠COD=∠CDO

∴∠COD+∠EOC=∠CDO+∠ODA

∴∠EOD=∠EDA

又∵∠DEA=∠OED

∴△EOD∽△EDA

D點(diǎn)作y軸的垂線交y軸于H;DF⊥AE與F.

∵A(2b,0),B(0,b)

∴OA=10;OB=5.

∴AB=5;

∵DF∥OB

∴===;

∴AF=OA=8;

∴OF=OA-AF=10-8=2;

∴DH=OF=2;

∵Rt△BHD中,BD2=BH2+HD2

∴BH==1;

∴CH=-1=;

∵DH∥OE;

∴=

∴OE=.

∴E的坐標(biāo)是:(-,0).25、略

【分析】【分析】(1)在解析式中分別令x=0與y=0;即可求得直線與y軸,x軸的交點(diǎn)坐標(biāo),即可求得OA,OB的長度,進(jìn)而求得正切值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論