重慶第二師范學(xué)院《機(jī)器學(xué)習(xí)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
重慶第二師范學(xué)院《機(jī)器學(xué)習(xí)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
重慶第二師范學(xué)院《機(jī)器學(xué)習(xí)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
重慶第二師范學(xué)院《機(jī)器學(xué)習(xí)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
重慶第二師范學(xué)院《機(jī)器學(xué)習(xí)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁重慶第二師范學(xué)院

《機(jī)器學(xué)習(xí)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)正在開發(fā)一個(gè)用于情感分析的深度學(xué)習(xí)模型,需要對(duì)模型進(jìn)行優(yōu)化。以下哪種優(yōu)化算法在深度學(xué)習(xí)中被廣泛使用?()A.隨機(jī)梯度下降(SGD)B.自適應(yīng)矩估計(jì)(Adam)C.牛頓法D.共軛梯度法2、在一個(gè)股票價(jià)格預(yù)測(cè)的場景中,需要根據(jù)歷史的股票價(jià)格、成交量、公司財(cái)務(wù)指標(biāo)等數(shù)據(jù)來預(yù)測(cè)未來的價(jià)格走勢(shì)。數(shù)據(jù)具有非線性、非平穩(wěn)和高噪聲的特點(diǎn)。以下哪種方法可能是最合適的?()A.傳統(tǒng)的線性回歸方法,簡單直觀,但無法處理非線性關(guān)系B.支持向量回歸(SVR),對(duì)非線性數(shù)據(jù)有一定處理能力,但對(duì)高噪聲數(shù)據(jù)可能效果不佳C.隨機(jī)森林回歸,能夠處理非線性和高噪聲數(shù)據(jù),但解釋性較差D.基于深度學(xué)習(xí)的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長短時(shí)記憶網(wǎng)絡(luò)(LSTM),對(duì)時(shí)間序列數(shù)據(jù)有較好的建模能力,但容易過擬合3、在一個(gè)信用評(píng)估模型中,我們需要根據(jù)用戶的個(gè)人信息、財(cái)務(wù)狀況等數(shù)據(jù)來判斷其信用風(fēng)險(xiǎn)。數(shù)據(jù)集存在類別不平衡的問題,即信用良好的用戶數(shù)量遠(yuǎn)遠(yuǎn)多于信用不良的用戶。為了解決這個(gè)問題,以下哪種方法是不合適的?()A.對(duì)少數(shù)類樣本進(jìn)行過采樣,增加其數(shù)量B.對(duì)多數(shù)類樣本進(jìn)行欠采樣,減少其數(shù)量C.為不同類別的樣本設(shè)置不同的權(quán)重,在損失函數(shù)中加以考慮D.直接使用原始數(shù)據(jù)集進(jìn)行訓(xùn)練,忽略類別不平衡4、假設(shè)正在研究一個(gè)醫(yī)療圖像診斷問題,需要對(duì)腫瘤進(jìn)行分類。由于醫(yī)療數(shù)據(jù)的獲取較為困難,數(shù)據(jù)集規(guī)模較小。在這種情況下,以下哪種技術(shù)可能有助于提高模型的性能?()A.使用大規(guī)模的預(yù)訓(xùn)練模型,并在小數(shù)據(jù)集上進(jìn)行微調(diào)B.增加模型的層數(shù)和參數(shù)數(shù)量,提高模型的復(fù)雜度C.減少特征數(shù)量,簡化模型結(jié)構(gòu)D.不進(jìn)行任何特殊處理,直接使用傳統(tǒng)機(jī)器學(xué)習(xí)算法5、在一個(gè)深度學(xué)習(xí)模型的訓(xùn)練過程中,出現(xiàn)了梯度消失的問題。以下哪種方法可以嘗試解決這個(gè)問題?()A.使用ReLU激活函數(shù)B.增加網(wǎng)絡(luò)層數(shù)C.減小學(xué)習(xí)率D.以上方法都可能有效6、假設(shè)正在開發(fā)一個(gè)智能推薦系統(tǒng),用于向用戶推薦個(gè)性化的商品。系統(tǒng)需要根據(jù)用戶的歷史購買記錄、瀏覽行為、搜索關(guān)鍵詞等信息來預(yù)測(cè)用戶的興趣和需求。在這個(gè)過程中,特征工程起到了關(guān)鍵作用。如果要將用戶的購買記錄轉(zhuǎn)化為有效的特征,以下哪種方法不太合適?()A.統(tǒng)計(jì)用戶購買每種商品的頻率B.對(duì)用戶購買的商品進(jìn)行分類,并計(jì)算各類別的比例C.直接將用戶購買的商品名稱作為特征輸入模型D.計(jì)算用戶購買商品的時(shí)間間隔和購買周期7、假設(shè)要使用機(jī)器學(xué)習(xí)算法來預(yù)測(cè)房價(jià)。數(shù)據(jù)集包含了房屋的面積、位置、房間數(shù)量等特征。如果特征之間存在非線性關(guān)系,以下哪種模型可能更適合?()A.線性回歸模型B.決策樹回歸模型C.支持向量回歸模型D.以上模型都可能適用8、在使用支持向量機(jī)(SVM)進(jìn)行分類時(shí),核函數(shù)的選擇對(duì)模型性能有重要影響。假設(shè)我們要對(duì)非線性可分的數(shù)據(jù)進(jìn)行分類。以下關(guān)于核函數(shù)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.線性核函數(shù)適用于數(shù)據(jù)本身接近線性可分的情況B.多項(xiàng)式核函數(shù)可以擬合復(fù)雜的非線性關(guān)系,但計(jì)算復(fù)雜度較高C.高斯核函數(shù)(RBF核)對(duì)數(shù)據(jù)的分布不敏感,適用于大多數(shù)情況D.選擇核函數(shù)時(shí),只需要考慮模型的復(fù)雜度,不需要考慮數(shù)據(jù)的特點(diǎn)9、某機(jī)器學(xué)習(xí)模型在訓(xùn)練過程中,損失函數(shù)的值一直沒有明顯下降。以下哪種可能是導(dǎo)致這種情況的原因?()A.學(xué)習(xí)率過高B.模型過于復(fù)雜C.數(shù)據(jù)預(yù)處理不當(dāng)D.以上原因都有可能10、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)用于醫(yī)療診斷的機(jī)器學(xué)習(xí)系統(tǒng),需要對(duì)疾病進(jìn)行預(yù)測(cè)。由于醫(yī)療數(shù)據(jù)的敏感性和重要性,模型的可解釋性至關(guān)重要。以下哪種模型或方法在提供可解釋性方面具有優(yōu)勢(shì)?()A.深度學(xué)習(xí)模型B.決策樹C.集成學(xué)習(xí)模型D.強(qiáng)化學(xué)習(xí)模型11、在一個(gè)多標(biāo)簽分類問題中,每個(gè)樣本可能同時(shí)屬于多個(gè)類別。例如,一篇文章可能同時(shí)涉及科技、娛樂和體育等多個(gè)主題。以下哪種方法可以有效地處理多標(biāo)簽分類任務(wù)?()A.將多標(biāo)簽問題轉(zhuǎn)化為多個(gè)二分類問題,分別進(jìn)行預(yù)測(cè)B.使用一個(gè)單一的分類器,輸出多個(gè)概率值表示屬于各個(gè)類別的可能性C.對(duì)每個(gè)標(biāo)簽分別訓(xùn)練一個(gè)獨(dú)立的分類器D.以上方法都不可行,多標(biāo)簽分類問題無法通過機(jī)器學(xué)習(xí)解決12、在使用梯度下降算法優(yōu)化模型參數(shù)時(shí),如果學(xué)習(xí)率設(shè)置過大,可能會(huì)導(dǎo)致以下哪種情況()A.收斂速度加快B.陷入局部最優(yōu)解C.模型無法收斂D.以上情況都不會(huì)發(fā)生13、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),例如檢測(cè)網(wǎng)絡(luò)中的異常流量。如果正常數(shù)據(jù)的模式較為復(fù)雜,以下哪種方法可能更適合用于發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于分類的方法14、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)圖像中的物體進(jìn)行實(shí)例分割,除了常見的深度學(xué)習(xí)模型,以下哪種技術(shù)可以提高分割的精度?()A.多尺度訓(xùn)練B.數(shù)據(jù)增強(qiáng)C.模型融合D.以上技術(shù)都可以15、在進(jìn)行自動(dòng)特征工程時(shí),以下關(guān)于自動(dòng)特征工程方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)可以從原始數(shù)據(jù)中自動(dòng)提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動(dòng)特征工程可以完全替代人工特征工程,不需要人工干預(yù)D.自動(dòng)特征工程需要大量的計(jì)算資源和時(shí)間,但可以提高特征工程的效率16、在使用樸素貝葉斯算法進(jìn)行分類時(shí),以下關(guān)于樸素貝葉斯的假設(shè)和特點(diǎn),哪一項(xiàng)是不正確的?()A.假設(shè)特征之間相互獨(dú)立,簡化了概率計(jì)算B.對(duì)于連續(xù)型特征,通常需要先進(jìn)行離散化處理C.樸素貝葉斯算法對(duì)輸入數(shù)據(jù)的分布沒有要求,適用于各種類型的數(shù)據(jù)D.樸素貝葉斯算法在處理高維度數(shù)據(jù)時(shí)性能較差,容易出現(xiàn)過擬合17、在機(jī)器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)是一種常見的學(xué)習(xí)方式。假設(shè)我們要使用監(jiān)督學(xué)習(xí)算法來預(yù)測(cè)房價(jià),給定了大量的房屋特征(如面積、房間數(shù)量、地理位置等)以及對(duì)應(yīng)的房價(jià)數(shù)據(jù)。以下關(guān)于監(jiān)督學(xué)習(xí)在這個(gè)任務(wù)中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以使用線性回歸算法,建立房屋特征與房價(jià)之間的線性關(guān)系模型B.決策樹算法可以根據(jù)房屋特征的不同取值來劃分決策節(jié)點(diǎn),最終預(yù)測(cè)房價(jià)C.支持向量機(jī)通過尋找一個(gè)最優(yōu)的超平面來對(duì)房屋數(shù)據(jù)進(jìn)行分類,從而預(yù)測(cè)房價(jià)D.無監(jiān)督學(xué)習(xí)算法如K-Means聚類算法可以直接用于房價(jià)的預(yù)測(cè),無需對(duì)數(shù)據(jù)進(jìn)行標(biāo)注18、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)大量的圖像進(jìn)行分類,但是計(jì)算資源有限。以下哪種技術(shù)可以在不顯著降低性能的前提下減少計(jì)算量?()A.模型壓縮B.數(shù)據(jù)量化C.遷移學(xué)習(xí)D.以上技術(shù)都可以考慮19、考慮一個(gè)回歸問題,我們要預(yù)測(cè)房價(jià)。數(shù)據(jù)集包含了房屋的面積、房間數(shù)量、地理位置等特征以及對(duì)應(yīng)的房價(jià)。在選擇評(píng)估指標(biāo)來衡量模型的性能時(shí),需要綜合考慮模型的準(zhǔn)確性和誤差的性質(zhì)。以下哪個(gè)評(píng)估指標(biāo)不僅考慮了預(yù)測(cè)值與真實(shí)值的偏差,還考慮了偏差的平方?()A.平均絕對(duì)誤差(MAE)B.均方誤差(MSE)C.決定系數(shù)(R2)D.準(zhǔn)確率(Accuracy)20、在處理自然語言處理任務(wù)時(shí),詞嵌入(WordEmbedding)是一種常用的技術(shù)。假設(shè)我們要對(duì)一段文本進(jìn)行情感分析。以下關(guān)于詞嵌入的描述,哪一項(xiàng)是錯(cuò)誤的?()A.詞嵌入將單詞表示為低維實(shí)數(shù)向量,捕捉單詞之間的語義關(guān)系B.Word2Vec和GloVe是常見的詞嵌入模型,可以學(xué)習(xí)到單詞的分布式表示C.詞嵌入向量的維度通常是固定的,且不同單詞的向量維度必須相同D.詞嵌入可以直接用于文本分類任務(wù),無需進(jìn)行進(jìn)一步的特征工程二、簡答題(本大題共5個(gè)小題,共25分)1、(本題5分)談?wù)勗谒こ讨?,機(jī)器學(xué)習(xí)的應(yīng)用。2、(本題5分)談?wù)勗诠派飳W(xué)中,機(jī)器學(xué)習(xí)的應(yīng)用。3、(本題5分)簡述在機(jī)器人領(lǐng)域,機(jī)器學(xué)習(xí)的應(yīng)用。4、(本題5分)解釋機(jī)器學(xué)習(xí)中長短時(shí)記憶網(wǎng)絡(luò)(LSTM)的工作原理。5、(本題5分)什么是自監(jiān)督學(xué)習(xí)中的對(duì)比學(xué)習(xí)?舉例說明其應(yīng)用。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)利用古生物學(xué)數(shù)據(jù)研究古生物的形態(tài)和演化。2、(本題5分)借助藝術(shù)創(chuàng)作數(shù)據(jù)激發(fā)創(chuàng)作靈感和創(chuàng)新。3、(本題5分)通過聚類算法對(duì)超市顧客的購買行為進(jìn)行分析。4、(本題5分)借助免疫細(xì)胞信號(hào)通路數(shù)據(jù)研究免疫反應(yīng)的調(diào)控。5、(本題5分)基于RNN對(duì)文本的邏輯結(jié)構(gòu)進(jìn)行分析。四、論述題(本大題共3個(gè)小題,共30分)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論