大一經(jīng)管類高等數(shù)學試卷_第1頁
大一經(jīng)管類高等數(shù)學試卷_第2頁
大一經(jīng)管類高等數(shù)學試卷_第3頁
大一經(jīng)管類高等數(shù)學試卷_第4頁
大一經(jīng)管類高等數(shù)學試卷_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

大一經(jīng)管類高等數(shù)學試卷一、選擇題

1.若函數(shù)\(f(x)=x^3-6x^2+9x\),則\(f'(x)\)等于()

A.\(3x^2-12x+9\)

B.\(3x^2-12x+3\)

C.\(3x^2-6x+9\)

D.\(3x^2-6x+3\)

2.下列函數(shù)中,可導的函數(shù)是()

A.\(f(x)=|x|\)

B.\(f(x)=x^2\)

C.\(f(x)=\sqrt{x}\)

D.\(f(x)=\frac{1}{x}\)

3.若\(\int_0^1f(x)\,dx=2\),則\(\int_0^2f(2x)\,dx\)等于()

A.4

B.8

C.16

D.0

4.若\(f(x)\)在\(x=1\)處連續(xù),則\(\lim_{x\to1}(f(x)-f(1))\)等于()

A.0

B.\(f'(1)\)

C.\(f(1)\)

D.無定義

5.若\(f(x)\)在\(x=a\)處可導,則\(\lim_{x\toa}\frac{f(x)-f(a)}{x-a}\)等于()

A.0

B.\(f'(a)\)

C.\(f(a)\)

D.無定義

6.若\(f(x)\)在\(x=a\)處可導,則\(\lim_{x\toa}\frac{f(x)-f(a)}{x^2-a^2}\)等于()

A.0

B.\(f'(a)\)

C.\(f(a)\)

D.無定義

7.若\(f(x)\)在\(x=a\)處連續(xù),則\(\lim_{x\toa}\frac{f(x)-f(a)}{x-a}\)等于()

A.0

B.\(f'(a)\)

C.\(f(a)\)

D.無定義

8.若\(f(x)\)在\(x=a\)處可導,則\(\lim_{x\toa}\frac{f(x)-f(a)}{x-a}\)等于()

A.0

B.\(f'(a)\)

C.\(f(a)\)

D.無定義

9.若\(f(x)\)在\(x=a\)處連續(xù),則\(\lim_{x\toa}\frac{f(x)-f(a)}{x-a}\)等于()

A.0

B.\(f'(a)\)

C.\(f(a)\)

D.無定義

10.若\(f(x)\)在\(x=a\)處可導,則\(\lim_{x\toa}\frac{f(x)-f(a)}{x-a}\)等于()

A.0

B.\(f'(a)\)

C.\(f(a)\)

D.無定義

二、判斷題

1.函數(shù)的可導性意味著它在某一點處連續(xù)。()

2.定積分的被積函數(shù)必須是有理函數(shù)。()

3.對于任意函數(shù)\(f(x)\),若\(\intf(x)\,dx\)存在,則\(\intf(x)\,dx\)必定存在反函數(shù)。()

4.函數(shù)的導數(shù)表示函數(shù)在某一點處的瞬時變化率。()

5.如果函數(shù)\(f(x)\)在區(qū)間\([a,b]\)上可導,那么\(f(x)\)在\((a,b)\)內(nèi)必定存在至少一個點\(c\),使得\(f'(c)=\frac{f(b)-f(a)}{b-a}\)。()

三、填空題

1.若\(f(x)=x^3-3x+2\),則\(f'(1)=\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\

四、簡答題

1.簡述導數(shù)的定義及其幾何意義。

2.舉例說明定積分與不定積分的關(guān)系。

3.解釋什么是函數(shù)的極值,并說明如何求一個函數(shù)的極大值和極小值。

4.簡述微積分基本定理的內(nèi)容及其證明思路。

5.如何判斷一個函數(shù)在某個區(qū)間上是否存在反函數(shù)?請給出一個具體的例子。

五、計算題

1.計算定積分\(\int_0^2(3x^2-4x+2)\,dx\)。

2.求函數(shù)\(f(x)=x^3-6x^2+9x\)的導數(shù)\(f'(x)\)。

3.求函數(shù)\(f(x)=\frac{1}{x^2+1}\)在\(x=0\)處的導數(shù)。

4.計算極限\(\lim_{x\to\infty}\frac{\sinx}{x}\)。

5.求函數(shù)\(f(x)=e^{2x}-e^{-2x}\)的不定積分\(\intf(x)\,dx\)。

六、案例分析題

1.案例背景:某公司生產(chǎn)一種產(chǎn)品,其產(chǎn)量\(Q\)與成本\(C\)的關(guān)系為\(C=10Q+500\),其中\(zhòng)(Q\)是以百為單位的產(chǎn)品數(shù)量。已知公司固定成本為500元,每生產(chǎn)一單位產(chǎn)品的變動成本為10元。

案例分析:

(1)求公司生產(chǎn)100單位產(chǎn)品的總成本。

(2)求公司生產(chǎn)100單位產(chǎn)品的平均成本和邊際成本。

(3)如果公司希望利潤最大化,那么它應該生產(chǎn)多少單位產(chǎn)品?

2.案例背景:某城市居民用電量與電費之間的關(guān)系可以近似表示為\(y=0.2x+20\),其中\(zhòng)(y\)是月電費(元),\(x\)是月用電量(度)。

案例分析:

(1)求居民每月用電量為100度時的電費。

(2)求居民用電量為100度時的電費彈性。

(3)假設電費上漲10%,預測居民用電量將如何變化。

七、應用題

1.應用題:已知函數(shù)\(f(x)=x^3-3x+2\),求\(f(x)\)在區(qū)間\([0,2]\)上的最大值和最小值。

2.應用題:某工廠生產(chǎn)一種產(chǎn)品,其產(chǎn)量\(Q\)與單位產(chǎn)品的生產(chǎn)成本\(C\)的關(guān)系為\(C=50+5Q\),其中\(zhòng)(Q\)是以百為單位的產(chǎn)品數(shù)量。已知該產(chǎn)品的市場需求函數(shù)為\(P=100-2Q\),其中\(zhòng)(P\)是單位產(chǎn)品的售價。

(1)求該工廠的總利潤函數(shù)\(L(Q)\)。

(2)求該工廠的最大利潤和相應的產(chǎn)量\(Q\)。

3.應用題:已知某城市居民每月的用水量\(x\)與水費\(y\)的關(guān)系為\(y=0.6x+10\),其中\(zhòng)(x\)是以立方米為單位的水量,\(y\)是水費(元)。

(1)求居民每月用水量為50立方米時的水費。

(2)求居民用水量的價格彈性。

4.應用題:某公司生產(chǎn)一種產(chǎn)品,其需求函數(shù)為\(P=100-2Q\),其中\(zhòng)(P\)是單位產(chǎn)品的售價,\(Q\)是銷售量。公司的固定成本為2000元,每生產(chǎn)一單位產(chǎn)品的可變成本為20元。

(1)求公司的總成本函數(shù)\(C(Q)\)。

(2)求公司的總收入函數(shù)\(R(Q)\)。

本專業(yè)課理論基礎(chǔ)試卷答案及知識點總結(jié)如下:

一、選擇題答案

1.A

2.C

3.B

4.A

5.B

6.A

7.B

8.B

9.B

10.B

二、判斷題答案

1.錯誤

2.錯誤

3.錯誤

4.正確

5.正確

三、填空題答案

1.\(f'(1)=0\)

2.\(\intf(x)\,dx=\frac{1}{2}x^2-3x^2+2x+C\)

3.\(f'(x)=3x^2-6x+9\)

4.\(\lim_{x\to\infty}\frac{\sinx}{x}=0\)

5.\(\intf(x)\,dx=\frac{1}{2}e^{2x}-\frac{1}{2}e^{-2x}+C\)

四、簡答題答案

1.導數(shù)的定義是函數(shù)在某一點處的瞬時變化率,幾何意義上表示曲線在該點的切線斜率。

2.定積分與不定積分的關(guān)系是:定積分可以看作是不定積分的一個特定值,即定積分是積分常數(shù)\(C\)為特定值時的不定積分。

3.函數(shù)的極值是函數(shù)在某個區(qū)間內(nèi)的局部最大值或最小值。求極大值和極小值的方法包括一階導數(shù)法和二階導數(shù)法。

4.微積分基本定理的內(nèi)容是:如果函數(shù)\(f(x)\)在閉區(qū)間\([a,b]\)上連續(xù),且\(F(x)\)是\(f(x)\)的一個原函數(shù),那么\(\int_a^bf(x)\,dx=F(b)-F(a)\)。

5.判斷一個函數(shù)在某個區(qū)間上是否存在反函數(shù)的方法是:如果函數(shù)在該區(qū)間上單調(diào)遞增或單調(diào)遞減,并且連續(xù),那么它在該區(qū)間上存在反函數(shù)。

五、計算題答案

1.\(\int_0^2(3x^2-4x+2)\,dx=\frac{10}{3}x^3-2x^2+2x\bigg|_0^2=\frac{10}{3}\cdot2^3-2\cdot2^2+2\cdot2=\frac{80}{3}-8+4=\frac{68}{3}\)

2.\(f'(x)=3x^2-6x+9\)

3.\(f'(0)=\lim_{x\to0}\frac{\frac{1}{x^2+1}-1}{x}=\lim_{x\to0}\frac{-x^2}{x(x^2+1)}=\lim_{x\to0}\frac{-x}{x^2+1}=0\)

4.\(\lim_{x\to\infty}\frac{\sinx}{x}=0\)(利用三角函數(shù)的有界性和極限的性質(zhì))

5.\(\intf(x)\,dx=\frac{1}{2}e^{2x}-\frac{1}{2}e^{-2x}+C\)

六、案例分析題答案

1.(1)總成本\(C(100)=10\cdot100+500=1500\)元。

(2)平均成本\(\frac{C(100)}{100}=15\)元,邊際成本\(C'(100)=10\)元。

(3)利潤最大化時,邊際收益等于邊際成本,即\(100-2Q=10\),解得\(Q=45\)。

2.(1)總利潤\(L(Q)=(100-2Q)Q-(50+5Q)=50

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論