杭州師范大學(xué)《數(shù)據(jù)庫原理綜合實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
杭州師范大學(xué)《數(shù)據(jù)庫原理綜合實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
杭州師范大學(xué)《數(shù)據(jù)庫原理綜合實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
杭州師范大學(xué)《數(shù)據(jù)庫原理綜合實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
杭州師范大學(xué)《數(shù)據(jù)庫原理綜合實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁杭州師范大學(xué)

《數(shù)據(jù)庫原理綜合實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、關(guān)于數(shù)據(jù)分析中的時間序列分析,假設(shè)要預(yù)測某股票價(jià)格在未來一段時間的走勢。時間序列數(shù)據(jù)具有季節(jié)性、趨勢性和隨機(jī)性等特點(diǎn)。以下哪種方法可能更適合進(jìn)行準(zhǔn)確的預(yù)測?()A.移動平均法,平滑數(shù)據(jù)B.指數(shù)平滑法,考慮不同權(quán)重C.ARIMA模型,結(jié)合自回歸和移動平均D.不進(jìn)行預(yù)測,隨機(jī)猜測股票價(jià)格2、對于一個分類問題,如果不同類別的樣本數(shù)量差異較大,在評估模型性能時,以下哪種指標(biāo)需要特別關(guān)注?()A.準(zhǔn)確率B.召回率C.F1值D.以上都是3、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的說法中,錯誤的是?()A.數(shù)據(jù)抽樣可以減少數(shù)據(jù)分析的時間和成本,同時保證樣本具有代表性B.隨機(jī)抽樣是一種常用的數(shù)據(jù)抽樣方法,能夠確保每個數(shù)據(jù)點(diǎn)被選中的概率相等C.分層抽樣可以根據(jù)某些特征將數(shù)據(jù)分為不同層次,然后從各層次中進(jìn)行抽樣D.數(shù)據(jù)抽樣的樣本大小越大,分析結(jié)果就越準(zhǔn)確,因此應(yīng)盡量選擇大樣本4、在數(shù)據(jù)分析中,對于一個包含多個變量的數(shù)據(jù)集,需要確定哪些變量對目標(biāo)變量的影響最大。假設(shè)變量之間存在復(fù)雜的非線性關(guān)系,以下哪種方法可能有助于進(jìn)行變量篩選和特征工程?()A.逐步回歸B.隨機(jī)森林C.支持向量機(jī)D.以上都是5、關(guān)于數(shù)據(jù)分析中的客戶細(xì)分,假設(shè)要根據(jù)客戶的購買行為、人口統(tǒng)計(jì)信息和在線活動將客戶分為不同的細(xì)分群體。以下哪種細(xì)分方法可能更能揭示客戶的潛在需求和行為模式?()A.RFM模型,基于消費(fèi)頻率、金額和最近消費(fèi)時間B.基于聚類的細(xì)分,自動發(fā)現(xiàn)相似群體C.基于決策樹的細(xì)分,根據(jù)規(guī)則劃分D.不進(jìn)行客戶細(xì)分,對所有客戶采用相同的策略6、在數(shù)據(jù)分析中,如果數(shù)據(jù)存在偏差,可能會導(dǎo)致分析結(jié)果不準(zhǔn)確。以下哪種情況可能導(dǎo)致數(shù)據(jù)偏差?()A.抽樣方法不合理B.數(shù)據(jù)錄入錯誤C.樣本量過小D.以上都是7、在進(jìn)行數(shù)據(jù)探索性分析時,我們需要對數(shù)據(jù)的分布、相關(guān)性等進(jìn)行初步了解。假設(shè)我們有一個包含多個變量的數(shù)據(jù)集。以下關(guān)于探索性分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.繪制直方圖可以觀察數(shù)據(jù)的分布形態(tài),判斷是否符合正態(tài)分布B.計(jì)算相關(guān)系數(shù)可以衡量變量之間的線性相關(guān)性C.探索性分析只是對數(shù)據(jù)的初步了解,對后續(xù)的分析沒有實(shí)質(zhì)性的幫助D.可以通過數(shù)據(jù)可視化和統(tǒng)計(jì)摘要來發(fā)現(xiàn)數(shù)據(jù)中的異常值和潛在模式8、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是非常重要的一步。以下關(guān)于數(shù)據(jù)清洗的描述,錯誤的是:()A.數(shù)據(jù)清洗旨在處理缺失值、異常值和重復(fù)值等問題B.可以通過刪除包含缺失值的整行數(shù)據(jù)來進(jìn)行處理C.對于異常值,應(yīng)一律刪除以保證數(shù)據(jù)的準(zhǔn)確性D.重復(fù)值的處理需要根據(jù)具體情況決定保留或刪除9、在數(shù)據(jù)分析中,若要研究變量之間的因果關(guān)系,以下哪種方法可能會被采用?()A.實(shí)驗(yàn)設(shè)計(jì)B.格蘭杰因果檢驗(yàn)C.結(jié)構(gòu)方程模型D.以上都有可能10、數(shù)據(jù)分析中的數(shù)據(jù)探索不僅包括數(shù)值型數(shù)據(jù),也包括類別型數(shù)據(jù)。假設(shè)要分析一個包含職業(yè)信息的類別型數(shù)據(jù)集,以下哪種方法可能有助于了解不同職業(yè)的分布情況?()A.計(jì)算每個職業(yè)的頻數(shù)B.繪制職業(yè)的直方圖C.進(jìn)行職業(yè)的聚類分析D.以上方法都可以11、在進(jìn)行數(shù)據(jù)分析時,異常值的檢測和處理是重要的環(huán)節(jié)。假設(shè)我們在分析一組生產(chǎn)線上的產(chǎn)品質(zhì)量數(shù)據(jù)。以下關(guān)于異常值的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.異常值可能是由于數(shù)據(jù)錄入錯誤或特殊情況導(dǎo)致的B.可以通過箱線圖等方法直觀地檢測異常值C.對于異常值,應(yīng)該立即刪除,以免影響分析結(jié)果D.對異常值的處理需要根據(jù)具體情況進(jìn)行判斷,有時需要進(jìn)一步調(diào)查原因12、對于數(shù)據(jù)分析中的數(shù)據(jù)融合,假設(shè)要整合來自多個數(shù)據(jù)源的數(shù)據(jù),這些數(shù)據(jù)源的數(shù)據(jù)格式、字段和含義可能不同。以下哪種數(shù)據(jù)融合方法可能更有助于實(shí)現(xiàn)數(shù)據(jù)的一致性和可用性?()A.基于規(guī)則的融合,制定明確的融合規(guī)則B.基于模型的融合,利用機(jī)器學(xué)習(xí)算法C.手動整合數(shù)據(jù),逐個處理D.不進(jìn)行數(shù)據(jù)融合,分別分析各個數(shù)據(jù)源的數(shù)據(jù)13、在進(jìn)行數(shù)據(jù)分析時,需要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理。標(biāo)準(zhǔn)化處理的主要目的是?()A.消除量綱的影響B(tài).使數(shù)據(jù)符合正態(tài)分布C.減少數(shù)據(jù)的誤差D.提高數(shù)據(jù)的準(zhǔn)確性14、在數(shù)據(jù)分析中,評估模型的性能是關(guān)鍵步驟。假設(shè)建立了一個預(yù)測客戶流失的模型,需要評估模型在不同閾值下的準(zhǔn)確性、召回率和F1值等指標(biāo)。以下哪種評估方法在這種客戶關(guān)系管理場景中能夠更全面地評估模型的性能?()A.交叉驗(yàn)證B.留出法C.自助法D.以上方法效果相同15、數(shù)據(jù)挖掘在發(fā)現(xiàn)隱藏在數(shù)據(jù)中的模式和知識方面發(fā)揮著重要作用。假設(shè)要從一個電商網(wǎng)站的用戶購買記錄中挖掘潛在的消費(fèi)模式,以下關(guān)于數(shù)據(jù)挖掘的描述,哪一項(xiàng)是不正確的?()A.關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)經(jīng)常一起購買的商品組合B.分類算法可以預(yù)測新用戶可能感興趣的商品類別C.數(shù)據(jù)挖掘的結(jié)果總是準(zhǔn)確無誤的,可以直接用于決策,無需進(jìn)一步驗(yàn)證D.聚類分析可以將用戶分為具有相似購買行為的不同群體16、在數(shù)據(jù)挖掘中,以下哪種算法常用于對客戶進(jìn)行分類,以實(shí)現(xiàn)精準(zhǔn)營銷?()A.決策樹算法B.關(guān)聯(lián)規(guī)則算法C.神經(jīng)網(wǎng)絡(luò)算法D.遺傳算法17、假設(shè)我們有一組關(guān)于學(xué)生成績的數(shù)據(jù),包括語文、數(shù)學(xué)、英語等科目成績,要分析這些科目成績之間的相關(guān)性,以下哪種可視化方法較為直觀?()A.熱力圖B.雷達(dá)圖C.散點(diǎn)圖矩陣D.以上都不是18、在進(jìn)行數(shù)據(jù)分析時,選擇合適的統(tǒng)計(jì)指標(biāo)對于描述數(shù)據(jù)特征非常重要。假設(shè)要分析一組學(xué)生的考試成績分布情況,包括成績的集中趨勢和離散程度。以下哪個統(tǒng)計(jì)指標(biāo)組合最能全面地描述數(shù)據(jù)的分布特征?()A.均值和標(biāo)準(zhǔn)差B.中位數(shù)和方差C.眾數(shù)和極差D.以上指標(biāo)都不夠全面19、在進(jìn)行時間序列預(yù)測時,如果數(shù)據(jù)存在明顯的周期性,但周期長度不固定,以下哪種方法可能適用?()A.Prophet模型B.LSTM神經(jīng)網(wǎng)絡(luò)C.動態(tài)時間規(guī)整D.以上都不是20、在處理大規(guī)模數(shù)據(jù)時,分布式計(jì)算框架如Hadoop被廣泛應(yīng)用。假設(shè)要對數(shù)十億行的日志數(shù)據(jù)進(jìn)行分析,以下哪個Hadoop組件可能主要負(fù)責(zé)數(shù)據(jù)的存儲?()A.HDFSB.MapReduceC.YARND.Hive二、簡答題(本大題共5個小題,共25分)1、(本題5分)闡述隨機(jī)森林算法的特點(diǎn)和優(yōu)勢,與單個決策樹相比,它在性能和穩(wěn)定性方面有何改進(jìn),并舉例說明其應(yīng)用。2、(本題5分)數(shù)據(jù)分析師在項(xiàng)目中需要與不同團(tuán)隊(duì)進(jìn)行有效溝通。請論述在數(shù)據(jù)分析項(xiàng)目中,如何與技術(shù)團(tuán)隊(duì)、業(yè)務(wù)部門和管理層進(jìn)行良好的溝通與協(xié)作。3、(本題5分)在進(jìn)行數(shù)據(jù)分析時,如何處理數(shù)據(jù)的時空相關(guān)性?闡述時空數(shù)據(jù)分析的方法和應(yīng)用,并舉例說明。4、(本題5分)在大數(shù)據(jù)分析中,流數(shù)據(jù)處理是常見的場景。請說明流數(shù)據(jù)的特點(diǎn)和處理流數(shù)據(jù)的常用技術(shù),如Storm、Flink等的工作原理。5、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的特征工程以提高模型的可解釋性,包括特征選擇和構(gòu)建的策略。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)某在線瑜伽用品銷售平臺積累了產(chǎn)品銷售數(shù)據(jù)、用戶需求特點(diǎn)、品牌競爭情況等。推出符合市場需求的瑜伽用品和促銷活動。2、(本題5分)某餐飲企業(yè)積累了菜品銷售數(shù)據(jù)、顧客評價(jià)、食材采購成本等信息。思考如何利用這些數(shù)據(jù)進(jìn)行菜品優(yōu)化和成本控制,提高經(jīng)營效益。3、(本題5分)某視頻平臺擁有用戶觀看時長、視頻類型偏好、付費(fèi)行為等數(shù)據(jù)。分析用戶的內(nèi)容消費(fèi)習(xí)慣,制定內(nèi)容創(chuàng)作和付費(fèi)策略。4、(本題5分)某網(wǎng)約車平臺收集了司機(jī)的接單習(xí)慣、服務(wù)評價(jià)、工作時間等。研究怎樣借助這些數(shù)據(jù)提高司機(jī)的服務(wù)質(zhì)量和工作效率。5、(本題5分)某視頻網(wǎng)站的紀(jì)錄片類目擁有用戶觀看數(shù)據(jù),如紀(jì)錄片主題、觀看時長、評論熱度、分享意愿等。分析紀(jì)錄片主題與觀看時長和評論熱度、分享意愿的相關(guān)性。四、論述題(本大題共3個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論