




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025DATA&AIRADAR
10challenges
tomasteryourData
&AItransformation
in2025
2
Summary
CHAPTER1
TheriseofAI:timetoscaleupandindustrializegovernance
1.IndustrializingAI
2.GenAIatscale:movingbeyondPoCtorealizetheopportunities
offeredbygenerativeAI
3.AIgovernance:increasedcomplexitytoaddressalltheunderlying
issues
4.Data/AIacculturationonalargescale,toaccelerateinnovation
andprepareforthefuture
CHAPTER2
UnlockthefullpotentialofData
5.AfederatedorganizationtounifyData-relatedroles,standards,and
practices
6.DemocratizetheuseofDataforasmanypeopleaspossible
7.Datastorytelling,ortheartofmakingDataspeakforitself
CHAPTER3
Datagovernanceandqualityremainkeyconcerns
8.SuccessfullycombiningDataQualityandDataObservability
9.GovernanceofunstructuredData:agrowingproblemfor
organizations
10.SystematizethemeasurementofthevaluegeneratedbyData
4
5
7
9
12
13
14
17
20
21
22
24
25
andwhat'snext?Preparingforthefuturebyputting27
peopleattheheartoftransformation
Data&AI:whatcanweexpect
in2025?
Theyear2024hasbeenachallengingoneforChiefDataOfficers/AIleaders,manyofwhomnowalsoholdthetitleofChiefData&AIOfficer,alongwiththeirteams.
TheriseofAI,particularlygenerativeAI,increasedinterestfromexecutivecommittees(ExCom)inData&AI,andevolvingregulationshaveputChiefDataOfficersunderpressuretotacklemultiplechallenges.
They’vehadtoaddresstheseemergingprioritieswhileexcellingintheirtraditionalrole:ensuringthecompanymaximizesthevalueofitsdataassetstoenhanceperformance,decision-making,and
competitiveness.
Tohelpyouprepareyourstrategiesandroadmapsfor2025(andbeyond),WavestonehasanalyzedthemajortrendsthatareshapingthedailyresponsibilitiesofChiefDataOfficersandthecore
challengestheywillfaceintheyearsahead.
WavestonesupportstheCDOs/AIleadersofmajorcompaniesandpublicinstitutionsonallgeographicalregions.Thisradarreflectstheassignmentscarriedoutduringtheyearandthechangesobservedbyallthefirm'sData&AIexperts.Wehavethusidentified
the10hottopicsfortheperiodahead.
3
4
TheriseofAI:
timetoscaleupandindustrialize
governance
CHAPTER1
1.IndustrializingAI
Despitetheriseofartificialintelligenceinthe
businessworld,around85%ofAIprojectsstillfailtoreachproduction.Thisfiguredecreasesslightlyfromyeartoyear,butremainsrelativelyhigh,
andonlythemostmatureorganizationsmanagetobringitdowndrastically.
TotakeAIprojectsallthewaytoproductionandintegratethemattheheartofbusinessprocesses,companiesarerethinkingtheiroperatingmodel.Thestakesaretwofold:
→Defineanorganization,rolesand
responsibilitiesthatprovidealltheskills
neededtoautonomouslydeliveraproductthroughoutitslifecycle;
→Definepracticestoensureproper
implementationofAI,fromdesignto
maintenanceinoperationalconditions.
Todate,thefirstchallengehasmostlybeen
addressedbysettingupAIFactory-type
organizations.Thesearespecifictoeach
organization,butwecanoutlineastate-of-the-artAIFactoryin3mainfunctions:
→ThefirstaimstoaddresstheData/AI
ecosystems,buildrelationshipswithpublishersandderivemaximumvaluefromthe
opportunitiesofferedbythemarket;
→Thesecondistodeliverusecases,bothforexperimentationandindustrialization;
→ThethirdaimstosteertheFactory'sactivities,bothupstream(managingbusinessdemand,drivingproposalstoaddressnewusecases)anddownstream(facilitatingadoption,drivingchangeandpromotingAIanditspotential
withintheorganization).
Thesecondchallengeliesindeliverypractices.AnMLmodelisnotenoughtodelivervalue;it
needstobedesignedfordeploymentin
production.Alltoooften,modelcreationis
decoupledfromdeployment,anddesignedfor
experimentation.Thereisnodesignauthority,nodevelopmentframework,noautomatedtasks,noversioning.MovingtowardsAIindustrialization
meansdeployingpartiallyautomatedmodelandinfrastructuremanagementpracticesthatare
designedforproductionuse.MLOpsaimstoaddresstheseissues.
5
CHAPTER1
Illustrationgénériqued'uneAIFactoryàl'étatdel'Arten2025
MLOps:thekeytomanagingAImodelsinproduction
FollowingonfromDevOps,MLOpsisasetofpracticesaimedatunifyingdevelopment
activities(Dev)andoperations(Ops),to
continuouslydeliverandmanageAImodels,fromdevelopmenttomonitoring,via
acceptanceanddeployment.Whilecertain
teamsarenowincreasinglyproficientininitialmodelproduction,thenextchallengestobeaddressedwillbeadvanced,automatic
performancemonitoring,driftdetectionandorchestrationofcontinuousretrainingto
maintainmodelrelevance.
ThechallengeforDataScientistsisnolongertoconfinethemselvestomodeldevelopment,buttoacquireMLEngineeringskillstoensuretheimplementationofthesepractices.Andfororganizations,thechallengeistodefinea
coherent,sharedframeworkacrosstheorganization,basedofcourseonbest
practicessharedbythemarket,andtodrivechangetoensureitsapplication.
6
CHAPTER1
2.GenAIatscale:movingbeyondPoC
torealizetheopportunitiesofferedby
generativeAI
2024sawtheriseofGenAI.OurstudyshowedinMay2024that
74%oforganizationshadalreadybegunworkonimplementinggenerativeAI.PoCshavebeenlaunchedsince2023andhaveledtoconvincingresults.Nevertheless,wenotethatmany
companiesarestillstuckinthePoCphaseandhavenotyetbeenabletomoveontotheindustrializationstage.SomeprojectsarestillPoCsmorethanayearaftertheirlaunch!
“GenerativeAIhasmade
decision-makersPoC-phobic."
Toavoidthissituation,werecommend:
→DefinesimplerulesforallPoCslaunchedwithinanorganization.Forexample,PoCsmustbe
limitedintimeandbudget,undergoaninitialarbitrationattheendofthefirstmilestone,andcanpotentiallybeextendedonceiftheinitialresultsareconvincing.Iftheexpectedresultstakealongtimetobedemonstrated,it'slikelythattheprojectwillhavetobeterminated,andthefocusshiftedtootherusecases;
→ManageasingleportfolioofGenAIPoCs(evenifdeliveryisdecentralized),andcollectively
arbitratewhichPoCsdeservetogofrom
deliverytoscale(demonstratedvalue,optimalreturnoninvestment,etc.).Thesemustbe
limitedinnumber,andacollectiveeffortmustbemadetodelivertheseprojectsas
effectivelyaspossible.
Atechnologicalstrategytobecarefullythoughtout
It'stemptingtowanttomovefasttotake
advantageofGenAIandgainacompetitiveedgequickly.
Somecompanieshaveentrusteddatascientistswiththekeystothehouse,inordertopromote
innovationandtime-to-value.However,this
strategycanbefraughtwithrisks:thefactthat
usecasesaredeliveredlocally,conceivedasa
singleunit,withrelativelylittleflexibilityand
scalability.AllthisatatimewhentheentireGenAIecosystemisevolvingveryrapidly,and
innovationsabound(newmodels,new
capabilities,etc.).How,forexample,canwe
ensurethatwewillbeabletomakethemostofanewmodelavailableonthemarketthatoffers
improvedperformance,withouthavingtorebuildeverything?
Worsestill,somecompanies,outofasenseof
havingfallenbehindtheircompetitors,quicklyforgedpartnershipswithcertaintechgiantstoreassuredecision-makers.Thesechoiceshave
sometimesledtovendorlockingsituations,in
whichanorganizationfindsitselflimitedinits
abilitytoinnovate,explorealternativesand
optimizeitsorientationsforspecificusecases.Inadditiontoflexibility,thefinancialequationcanalsobedegradedinthelongrun.
Companiesthathavethoughtthroughtheir
medium-tolong-termstrategyhavethustakentheirdesireforrobustnessandtechnology
diversificationintotheirownhands.Forexample,manyarebuildingmodel-agnosticGenAI
platformsandarchitectures.Suchaplatformmakesitpossibletohost,trainandmonitora
varietyofLLMs,enablingtheLLMbestsuitedtoeachsituationtobeusedtoderiveoptimum
value.Flexibilityisguaranteed,asisadaptabilityandtheabilitytoaccommodateafreshly
publishedmodel.
7
CHAPTER1
MaterializationintheformofAgents
AnAIAgentisasystemdesignedtoreasonwithcomplexproblems,createactionplans,and
executetheseplansusingaseriesoftools.Unliketraditionalcomputerapplications,theseagentshaveadvancedreasoning,memorization,and
taskexecutioncapabilities.Theseagentscan,forexample,solvecomplexproblems(e.g.,generateprojectplans,writecode...),performself-criticismbyanalyzingtheirownoutputs,useexistingtools
andIS,andevenperforminter-agentcollaboration.
TheseAgentsaremadeupofseveralelements:
1.ACoreAgent:thecentralelementintegratingallprocessingfunctionalities.
2.Amemorymodule:storesandretrieves
informationtomaintaincontextandcontinuityovertime.
3.Asetoftools:externalresourcesandAPIsthattheagentcanusetoperformspecifictasks.
4.Aplanningmodule:analyzesproblemsanddevelopsstrategiestosolvethem.
8
CHAPTER1
3.AIgovernance:increased
complexitytoaddressalltheunderlyingissues
TheriseofAIisalsopromptingdecision-makerstostrengthen
governance,bygraspingalltheissuesatstake.Thesearemany:riskmanagement,compliance,sovereignty,ethics,carbon
footprint,arejustsomeoftheissuestobeaddressedthroughthisgovernance.Anumberofissuesneedtobetackledatthesame
time,inordertoestablishasustainableapproachtoimplementingartificialintelligence.
AnorganizationadaptedtoaddressAI-relatedchallengesholistically
Organizationshavebeguntosetupan
organizationandrolestogovernAI-relatedtopics.Allofthemarefacingachallenge:managingtostriketherightbalancebetweenhavingaglobal,centrally-controlledview,whilenotbridlinglocalinitiativesandinnovativebusinesslineinitiatives.
Thekeyconcernisthereforeto"manage
decentralization"oftheIAinitiativeportfolio.Toachievethis,weneedto:
→Defineclearrolesandresponsibilitiesbetweencentralandlocallevels;
→Forcross-functionalfunctions(CDO,DPO,AIFactory,etc.),defineeachperson's
responsibilitiesandspecifyboundariesandinteractions.
→Implementmulti-levelgovernance:
?Astrategicbody,involvingmembersoftheexecutivecommittee,toapprehendallthesubjectsinherentinAI,particularlythe
impactsonHR,partners,customers...;
?Anoperationalbody,tomanagetheportfolio,highlightlocalinitiativesandencouragethedisseminationofsuccessfulinitiatives
throughouttheorganization.Thisbody
enablesustomaintainanexhaustiveviewoftheportfolio,soastobettermanagerisks
andensurecompliancewiththeAIAct(seebelow).
AgrowingneedfortrustedAI
TrustedAIreferstoartificialintelligencedesignedanddeployedinsuchawayastoguaranteehighlevelsoftransparency,safety,fairness,and
respectforhumanrightsandethicalvalues.ThisimpliesthatAIisdevelopedincompliancewith
rigorousstandardstoavoiduncontrolledbias,
protectuserprivacy,andensurerobustnessinthefaceoferrorsorcyber-attacks.TrustedAIisalsoexplainable,enablinguserstounderstandhow
andwhyitmakescertaindecisions.Finally,itincludesresponsiblegovernance,where
designersandoperatorsassumeresponsibilityfor
itsimpacts,whileintegratingcontroland
supervisionmechanismstopreventabuseormalicioususe.
SettinguptrustedAIsrequirestheinvolvementofavarietyofplayers:
→EthicsandCSRteams,todefineanAIpolicythatembodiesclearprinciplesandisalignedwiththeorganization'svalues;
→Engineersdevelopingthemodels,inordertoprovideexplainableanddocumentedmodels
→HRteams,tohelpsetuptrainingmodulessothatteamsapplytheseinstructions;
→BusinessesandDatascientists,toanalyzebiasesandmonitorresults;
→CISOandDPO,toguaranteesecurity,testvulnerabilitiesandcarryoutcontrols;
→ChiefData&AIOfficers,tosteertheoverallapproach.
9
CHAPTER1
TheAIAct:Gettingyourorganization
startedoncompliance
TheAIActwasenactedandcameintoforcein
August2024.TheActaimstoensurethatartificialintelligencesystemsandmodelsmarketedwithintheEuropeanUnionareusedethically,safelyandinawaythatrespectsEUfundamentalrights.
TheAIActthuscreatesregulationsapplicabletoartificialintelligencesystemsandmodelsbeingcommercializedandmarketed.Research
activitieswithnocommercialobjectivearenot
affected.Allsuppliers,distributorsordeployersofAIsystemsandmodels,legalentities(companies,foundations,associations,researchlaboratories,etc.),headquarteredintheEuropeanUnion,or
whenheadquarteredoutsidetheEuropeanUnion,whomarkettheirAIsystemormodelinthe
EuropeanUnion.
ThelevelofregulationandassociatedobligationsdependonthelevelofriskpresentedbytheAI
systemormodel.Thereare4levelsofrisk,and4levelsofcompliance:
→AIwithunacceptablerisk:AIsystemsand
modelswithunacceptableriskareprohibitedandmaynotbemarketedintheEuropean
Unionorusedforexport;
→High-riskAI:high-riskAIsystemsandmodelsmustbeCEmarkedtobemarketed;
→Low-riskAI:low-riskAIsystemsandmodelsmustbesubjecttoinformationand
transparencyobligationsvis-à-visusers;
→Minimal-riskAI:minimal-riskAIsystemsandmodelscancomplywithconductmeasures.
SpecialobligationsapplytogenerativeAIandtothedevelopmentofgeneral-purposeAImodels*(e.g.LLMs),withdifferentregulationsdependingonwhetherthebasicmodelisaccessibleornot,andonothersubsidiarycriteria(computing
power,numberofusers,etc.).
AIwillbeimplementedgraduallyoverthecomingyears:
→February2,2025:Article5takeseffect,
banningAIsystemswithunacceptablerisks;
→August2,2025:regulationsongeneral-
purposeAImodelswillbegin.TheEUAIOffice,alreadyestablished,willoverseegovernanceandregulatoryprocedures.Sanctionsfornon-compliancewillalsobegintoapply;
→August2,2026:generalapplicationoftheAIActbegins,withtheexceptionofarticle6
paragraph1onhigh-risksystems;
→August2,2027:appliedruleswillbeextendedtohigh-risksystems.TheEuropean
Commissionwillpublishpracticalguidelinesandexamplesofhigh-riskAIsystemsby
February1,2026.
Howtogetstartedoncompliance?StartwithanassessmentoftheAIsystemsinplaceandintheprocessofbeingsetup.
Asareminder,Wavestonehas
published,withFranceDigitaleandGide,
apracticalguide
toenable
companiestounderstandandapplyEuropeanAIlaw.
10
CHAPTER1
Risksandcybersecurity,alltoooften
forgotteninprojects
Withallthebuzzaroundartificialintelligence(AI),organizationsarefacingunprecedentedthreatsthatgototheveryheartofthesemodels.New
attacksaretakingshape,suchaspoisoning
(modifyingtrainingdatatotrickit),oracle
(hijackingAIstomakethemrevealthingsthey
shouldn't),orillusion(makingAIsbelievethingsthatarefalsebutinvisibletohumans).Newriskassessmentandprotectionmeasuresneedtobeputinplace.
Intheshortterm,thepriorityisthereforetosecurebusinessprojectsusingAI,particularlyinthe
followingstages:
→ClassificationofAIusecasesaccordingto
regulatorycriteria(refertothefutureEuropeanAIAct)ortheNIST(NationalInstituteof
StandardsandTechnology)AIriskmanagementframework;
→Definitionoftheresponsibilitymatrixandgovernanceforvalidatingusecases,takingintoaccountcybersecurity,transparency,privacy,biasandethics;
→Implementspecificmeasureswhen
necessary,eitherbyintegratingthemdirectlyintotheprojectdesign,orbyimplementing
newAIsecurityproductsthatarestartingtoappear.
11
CHAPTER1
4.Data/AIacculturationonalarge
scale,toaccelerateinnovationandprepareforthefuture
Oneofthemainobstaclestotheadoptionofinnovationsremainshumanresistance.AIisnoexception,anditsadoptionremains
amajorchallenge,notleastbecauseofthefearsand
misunderstandingsitarouses.Itisthereforebecomingcrucial
forcompaniestoacculturatetheirteamstoAI,bydemystifyingthistechnologyandexplainingitsapplicationsinconcreteterms.
and(and
DemystifyingAI:Reassuringinformingaboutwhatitcancannot)do
ThefirstchallengeofacculturationtoAIisto
dispelthemisunderstandingsandfearsthat
surroundit.Formany,AIisstillperceivedasa
mysterious,eventhreateningtechnology,capableofreplacinghumansormakinguncontrollable
decisions.ItisthereforeessentialtodemystifyAIbyexplainingwhatitcando,butalsoits
limitations.Forexample,AIisextremelypowerfulwhenitcomestoprocessinglargequantitiesofdataandautomatingrepetitivetasks,butitlackshumanawarenessandintuition.Reassuring
teamsonthesepointshelpspreparethemto
collaboratewiththesetechnologies,ratherthanfearingthem.
Daringtoexploretechnicalconcepts:thechallengeofmakingapplicationsconcrete
Beyondthisdemystification,it'simportanttodaretogofurtherinpedagogybyexplainingto
businessteamswhatthetechnologiesunderlyingAIareinconcreteterms.AImanagers:dareto
explaintoyourbusinessteamsandexecutives
whatOCR,LLMandclusteringare.Byrepeating
theseexplanationsandtakingastepback,you'llbeabletomaketheapplicationofAIinbusinessprocessestangible.Employeeswillthenbeabletounderstandhowthesetechnologiescanbe
integratedintotheirday-to-daywork,identifytheprocessesthatcouldbetransformedandthe
pocketsofvaluetobeexploitedforthecompany.
"NoData,noAI!?
Finally,acculturationmustinsistthatmagicalAIdoesn'texist,andthatitrequirestrainingmodelsonqualityData.AndtoinvolvebusinessunitsinDatamanagement.
12
Unlockthefull
potentialofData
CHAPTER2
5.Afederatedorganizationtounify
Data-relatedroles,standards,andpractices
EveryonenowagreesthatDataisakeyassetforthesuccessoforganizations.Yetitspotential
oftenremainsunder-exploited,dueto
organizationalsilos,knowledge,datacontrol,
accessibility,andinteroperability.Heterogeneouspracticesalsomakecollaborationbetween
differentteamsdifficult.
Tomeetthesechallenges,Datagovernance
remainsthewatchword.Anoperationalmodel
coveringorganization,roles,andresponsibilities,aswellasoperatingmodes,remainsamust-
haveforallorganizations.Andbeyondtheory,
thinkingaboutimplementationthroughconcretepracticesthatcanbeunderstoodbyallplayersisastrongdifferentiator,wheremanyorganizationsstillconfinethemselvestodescriptionwithout
tangibleapplicationoftheelementsdefined.Thisoperationalmodelcoversseveralkey
themes:
ThemostmatureorganizationshavetakenstepstogivethekeystotheirDataassetsbacktothe
business.ThismeansinvolvingbusinessfunctionsinDatamanagementandmakingthem
accountablefortheseactivities.Forexample:
→Businesses(re)becomeaccountableforDatamanagementwithintheirscope(Data
mapping,documentation,qualitymonitoringandimplementationofcorrectiveactions,
etc.);
→TheDataOfficeplaystheroleoforchestra
conductor,definingtheframework,tools,
policies,practices,andstandards.Itisalso
responsibleforsupportingthebusinessunitsintheirdevelopment,throughtrainingand
coaching.
1.Aneworganization,federatedaroundDatadomains,inwhichbusinesses
regaincontroloftheirData
Foralongtime,ITandDatamanagementhavebeenthemainstaysofDatamanagement.TheyarestilldoingsointheleastData-mature
organizations.Thisposesseveralproblems:
→Businessunitslackautonomyincontrolling
theirData,andbecomerelativelydependentonITorDatadepartmentsforaccesstotheirData,delayingthetime-to-marketofanalysesandprojects;
→Ontheotherhand,ITDepartmentsare
sometimesheldresponsibleforthequalityofDataoverwhichtheyhavenocontrolinordertodeveloptheprocessesusedtogenerate
andprocessit.Attemptstoremedythe
situationofteninvolvereprocessingthestock,withoutaddressingtheflowproblemsatthesourceofdatacreation.
Thechallengeistogivethebusiness
unitsbackthekeystotheirData
assets.
14
CHAPTER2
2.Aunifiedrolerepositorytofacilitate
know-howdeduplication,recruitmentandcareermanagement
It'snotuncommontofindorganizationsthatcan'ttellyouhowmany"Dataemployees"theyhave.Data'suniquepositionatthecrossroadsof
businessandtechnologyisamajorcontributingfactor.Theconsequencesaremanifold:
→Difficultyinmanagingtheworkforceandstrategicworkforceplanning;
→Difficultyinmanagingskillsandmaintainingthematthestateoftheartfortheseprofiles,againstabackdropofrapidlyevolving
technologiesandassociatedknow-how;
→Recruitmentandinternalmobilitycanbe
laborious,withcandidatesunableto
understandtheactivitiesbehindtheseprofilesandcareerpathsunclear;
→Data-relatedoperatingmethodsand
responsibilitiesthatneedtobefinelydefinedonaperimeter-by-perimeterbasis,andwhoseunderstandingbytherestoftheorganizationremainsopaque.
So,beyondacoherentorganization,Data/AIroles
aretendingtobestreamlinedtowardsa
common,sharedrepositoryacrossthe
organization.HRteamsarefullyintegratedintothisapproach.
3.Commonstandardsandpracticesthroughouttheorganization
Forthisfederatedorganizationtofunction
effectively,itisessentialtodefineandunifyDatamanagementstandardsandpractices.This
includescommonrulesfordatagovernance,
cataloguingprocedures,documentation
standards,aswellassecurityandcompliancepolicies.Inaddition,anorganization-wideDatacatalogisdefined,whichdescribesbusiness
conceptsviaaDataglossary,documentsDataintheDatadictionary,andrecordsthe
transformationsundergonebykeyData(Datalineage).
UnifiedstandardsensureDataconsistencyandqualitythroughouttheorganization.Theyalso
facilitatesystemintegrationandinteroperability,makingDatamoreaccessibleandusablebyall.Forexample,astandardizedDatamodelenablesteamsfromdifferentareastocollaboratemore
easily,shareinsights,andmultiplythevaluecreated.
What'smore,thesestandardsfacilitateData
sharing,notonlywithintheorganization,butalsoviaothersubsidiaries,andevenwiththirdpartiesandexternalpartners.
15
CHAPTER2
FocusonFiDA,thenewEuropeanregulationthatwillmakeamajor
contributiontothegrowingmaturityofDatasharinginfinancialservices:
TheFinancialDataAccess(FiDA)
regulationproposedbytheEuropean
CommissioninJune2023aimstocreatealegalframeworkfortheaccessand
useofconsumerfinancialData.ItispartofthebroaderOpenFinancestrategy,
extendingtherulesalreadyintroducedbythePaymentServicesDirective
(PSD2),whichonlyconcernedpaymentaccounts.
Essentially,FIDAwillmakeitpossibleto:→GreaterDatatransparency,withclear
andtransparentcommunicationonhowcustomerDataisusedand
sharedbetweenfinancialinstitutions;
→Fine-grainedcustomerconsent,
givingcustomerstheabilitytogrant,manageandwithdrawconsentfordatasharing;
→Enhancedsecurity,byimplementing
strictsecuritymeasuresforthe
protectionandprocessingoffinancialData;
→StandardizationofuserDataandtechnicalinterfacestoaccelerateData-sharingcapabilities.
FiDAcompliancewillthereforerequiretheimplementationofrulesfor
accessingandsharingveryspecific
customerData,andwillcontributetoasometimesforcedriseinthematurityoffinancialservicesplayersintheirDatasharingcapabilities.
16
CHAPTER2
6.DemocratizetheuseofData
forasmanypeopleaspossible
Theframeworkisthusset,withanorganization,roles/responsibilitiesandoperatingmodes.
AllthatremainsistopreparetheDataandmakeitavailabletothegreatestpossiblenumberofpeople.
a.DataProductstobuildupawealthofDatareadytobeexploited
WiththeexplosionofDataandtheaccelerationinitsuse,anewparadigmhasemergedoverthe
yearstofacilitateitsaccessanduse.TheconceptoftheDataproducthasthusemerged,andisnowbeingadoptedeverywhere.
ADataproductcanbegenericallydefinedas"aproductthatfacilitatesanend-goalthroughtheuseofData".Thetermthusencompassesvariousitems:
→Technicalfoundation"typeproducts,i.e.
technologicalcapabilitiesthatrepresentthefoundationsformanagingandleveragingData,andwhoseconstructionandevolutionarecarriedoutinproductmode(e.g.,aRAGplatform,theDatacatalog...);
→Dataproducts,wheretheDataitselfisofferedasaready-to-consumeproduct(e.g.,
customerrepository,salesperperimeter,etc.);
→Analyticsproducts(e.g.,BIdashboard,
recommendationengine,scoringmodel,etc.).
Inparticular,andbymisuseoflanguage,theDataproductisassimilatedtotheconceptof“Dataasproduct".ItisinthissensethattheDataproductisdefinedthroughtheDataMeshasdefinedby
ZhamakDehghani(seebelow).
ThisDataproducthasseveralbasicfeatures:
→Discoverable:Datais"sorted"bybusinessdomain(thenbysub-domains,families,
businessobjects,etc.)andstoredina
marketplace.PotentialconsumersarethusabletoseewhatDataisavailable,readitsdescription,andrequestaccesstoitif
necessary;
→Self-describing:productsaredocumented
anduserscanindependentlyunderstandwhattheycontain(viaproductdefi
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 國(guó)有土地開發(fā)建設(shè)合同范文
- 國(guó)際商標(biāo)使用權(quán)轉(zhuǎn)讓合同標(biāo)準(zhǔn)格式
- 合資成立分公司合同書
- 成都市房屋租賃簡(jiǎn)易合同模板
- 項(xiàng)目出資合同模板
- 水產(chǎn)養(yǎng)殖基地建設(shè)承包合同范本
- 建筑工程施工合同樣本(律師審核版)
- 訴訟離婚合同范本
- 廣播電視設(shè)備智能生物藥品臨床應(yīng)用技術(shù)考核試卷
- 信息技術(shù)創(chuàng)新與數(shù)字化轉(zhuǎn)型考核試卷
- 2024年單招計(jì)算機(jī)試題題庫(kù)及答案
- 肝癌科普講座課件
- 中國(guó)航天“大總師-孫家棟”
- 機(jī)電運(yùn)輸安全基本知識(shí)
- 基于51單片機(jī)的無(wú)功補(bǔ)償裝置
- 幼兒園公開課:大班語(yǔ)言《相反國(guó)》課件(優(yōu)化版)
- 水利設(shè)施維護(hù)投標(biāo)方案(技術(shù)標(biāo))
- 2024屆湖南省長(zhǎng)沙市湖南師大附中等校高三上學(xué)期月考(二)語(yǔ)文試題(解析版)
- 上??萍及嫘W(xué)二年級(jí)下冊(cè)綜合實(shí)踐活動(dòng)全冊(cè)教案
- 氣缸磨損的測(cè)量說課教案
- 《高鐵乘務(wù)安全管理及應(yīng)急處置》課程教案-崔藝琳編寫
評(píng)論
0/150
提交評(píng)論