




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper11030
GlobalExpansionofMarineProtectedAreasandtheRedistributionofFishingEffort
GavinMcDonald
JenniferBone
ChristopherCostello
GabrielEnglander
JenniferRaynor
WORLDBANKGROUP
DevelopmentEconomics
DevelopmentResearchGroupJanuary2025
PolicyResearchWorkingPaper11030
Abstract
Theexpansionofmarineprotectedareas(MPAs)isacorefocusofglobalconservationefforts,withthe“30x30”ini-tiativetoprotect30%oftheoceanby2030servingasaprominentexampleofthistrend.ThispaperexaminesaseriesofproposedMPAnetworkexpansionsofvarioussizesandforecaststheimpactthatincreasedprotectioncouldhaveonglobalpatternsoffishingeffort.Thisisaccom-plishedusingapredictivemachinelearningmodeltrainedonaglobaldatasetofsatellite-basedfishingvesselmoni-toringdata,currentMPAlocations,andspatiotemporalenvironmental,geographic,political,andeconomicfea-tures.ThemodelpredictsfuturefishingeffortundervariousMPAexpansionscenarios,comparedtoabusiness-as-usualcounterfactualscenariothatincludesnonewMPAs.The
differencebetweenthesescenariosrepresentsthepredictedchangeinfishingeffortresultingfromMPAexpansion.Theresultsshowthat,regardlessoftheMPAnetwork’sobjec-tiveorsize,fishingeffortwoulddecreaseinsidetheMPAs,thoughbymuchlessthan100%.Moreover,thisreduc-tioninfishingeffortwithinMPAsdoesnotsimplyshiftoutside—fishingeffortoutsideMPAsalsodeclines.Theoverallmagnitudeofthepredicteddecreaseinglobalfishingeffortprincipallydependsonwherenetworksareplacedinrelationtoexistingfishingeffort.MPAexpansionwillleadtoaglobalredistributionoffishingeffort,whichshouldbeconsideredinnetworkdesign,implementation,andimpactevaluation.
ThispaperisaproductoftheDevelopmentResearchGroup,DevelopmentEconomics.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp
.Theauthorsmaybecontactedataenglander@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
Globalexpansionofmarineprotectedareasandtheredistributionoffishingeffort
GavinMcDonald1,2,3*,JenniferBone1,2,3,ChristopherCostello1,2,3,GabrielEnglander4,JenniferRaynor5
1MarineScienceInstitute,UniversityofCalifornia,SantaBarbara,USA.
2BrenSchoolofEnvironmentalScienceandManagement,UniversityofCalifornia,SantaBarbara,USA.
3EnvironmentalMarketsLab,UniversityofCalifornia,SantaBarbara,USA.
4DevelopmentResearchGroup,TheWorldBank,USA.
5DepartmentofForestandWildlifeEcology,UniversityofWisconsin-Madison,USA.
*Correspondingauthor(s).E-mail(s):gmcdonald@;
Contributingauthors:jbone@;ccostello@;
aenglander@;jraynor@;
JELclassiication:Q22,Q28
Keywords:marineprotectedareas|isherieseconomics|isherbehavior|predictivemachinelearning
2
1Introduction
Theexpansionofmarineprotectedareas(MPAs)isacrucialpartofglobalconservationefforts[1].The“30x30”initiative,forexample,aimstopro-tectatleast30%oftheworld’soceansby2030throughacombinationoffullyprotectedareas(noextractiveactivitiesallowed)andpartiallyprotectedareas(someactivitiesremainpermit-ted)[2,3].Currently,fullyprotectedMPAscoverlessthan3%oftheworld’soceans,butthisisexpectedtoincrease[4,5].AsfullyprotectedMPAsexpand,itiscrucialtounderstandtheirimpactonglobalfishingeffort.ThecreationoffullyprotectedMPAswillshiftthelocationandintensityofindustrialfishingeffort—asfishersmoveoutofnewly-createdMPAs,increasedcon-gestionandalteredeconomicopportunitiesfromfishingcouldleadtoacascadeofredistributionthatripplesfromproximatetofarflungareas[6].Butwhereandhowmuchfishingeffortwillmoveremainsanunansweredquestion.
Theeffectivenessandlongevityoffullypro-tectedMPAexpansiondependsonhowfishingeffortresponds.Iffishingeffortsimplymoveselsewhere,itcouldincreasefishingintensityandthreatenbiodiversityoutsideofMPAs,possiblyevenreversingthepresumedbiodiversitybene-fitsofprotection[7].However,iffishingeffortdecreases(e.g.,duetoincreasedcompetitionandreducedprofitability),itcouldprotectbiodiversity[8]butpotentiallyharmtheeconomiesoffishery-dependentnationsandthefeasibilityoflong-termprotectioncommitments.
Forexample,twoofthelargestfullyprotectedMPAsevercreated,PhoenixIslandsProtectedAreaandPalauNationalMarineSanctuary,wererecentlyre-openedtofishingbecauseoftheirper-ceivednegativeeconomiceffects.Infact,protectedareadowngrading,downsizing,anddegazettementofMPAshasbeenobservedindozensofMPAsaroundtheworld,withcommercialfishinginter-estsbeingoneofthedrivingfactors[9].Thus,understandinghowfishingeffortwillredistributemustbeacentralcomponentofmarinespatialplanning.
PreviousresearchhasmeasuredtheeffectofindividualMPAsonfishingresponses,buttyp-icallyforasinglefleetinalimitedarea;noneoftheexistingmethodscancapturetheeffectsofglobalinterventionsaffectingallfishingfleets.
Simulationmethodsdevelopedinthefisherieslit-erature[10]andlocationchoicemodelsdevelopedintheeconomicsliterature[6,11–14]arehelp-fulforunderstandingthestructureofindividualbehavior,butareunlikelytoapplywhencon-sideringcomplexinteractionsbetweenmultiplefleetsattheglobalscale.Theyalsooftenrequiredetailedvessel-leveldata,whicharerarelyavail-ablegloballyevenwithmodernsatellitetracking.Causalinferencemethodshavebeeneffectiveinexaminingregionaleffectsofindividualmarineprotectionpolicies[15–18],butthesemethodsrequireanunaffectedcontrolgroup,whichbydef-initiondoesnotexistforapolicythatinducesglobaleffects.Asaresult,simulationsoflarge-scaleMPAexpansionshavereliedonheuristicassumptionsoffisherresponses,suchasassumingnochangeoutsideMPAsorauniformrealloca-tionofeffortfromwithinMPAstoareasoutside[19–23].Thisapproachprovidesan“allelseequal”referencepoint,butitisanassumedscenario,notanempirically-drivenresponse,sodoesnotcapturethetrueneteffectofthepolicy.
Wedevelopthefirstdata-driven,predictivebehavioralmodelofglobalfishingeffortresponsefollowinglarge-scalespatialclosures.WebeginbycompilingaglobaldatasetoffishingeffortforallindustrialfishingvesselsthatusedAutomaticIdentificationSystem(AIS)transpondersbetween2016and2021[24],whichisouroutcomevari-able(Fig.1).Wethengenerate42modelfeaturesthatincludespatialandtemporalinformationonthegeographicdistributionoffullyprotectedMPAs,environmentalandeconomicconditions,andgeographicandgovernancecharacteristics;wealsoassessAISreceptionquality,whichcanaffectperceivedfishingeffortfromAIStranspon-ders(seeMaterialsandMethodsforacompletelistofmodelfeatures).Inordertopromotecom-putationaltractability,weaggregatealldatatoa1x1degreepixellevelannually;however,themodelcanbeimplemented,inprinciple,atanygeographicresolution.Nextwetrainaseriesoftwo-stagehurdlerandomforestmodelstopre-dictfishingeffortone,two,andthreeyearsinthefuture:thefirststagepredictswhetheranyfishingoccursinapixel,andthesecondstagepredictstheintensityoffishingifitoccurred.Wetunethemodelhyperparametersusingcross-validation(CV)withtime-basedfolds,andwequantifyout-of-sampleperformanceoverbothtimeandspace.
3
Finally,weusethetrainedmodelstopredict:(i)abusiness-as-usual(BAU)counterfactualsce-nario,whichrepresentsfuturefishingeffortifnonewfullyprotectedMPAsareimplementedand(ii)MPAexpansionscenarios,whichrepre-sentfuturefishingeffortasfullyprotectedMPAcoverageincrementallyincreasesfromcurrentlev-els.ThedifferencebetweeneachMPAexpansionscenarioandtheBAUcounterfactualscenariorep-resentsthepredictedchangeinfishingeffortasaresultoftheMPAexpansion.Wefocusouranal-ysisonthepotentialimpactsoffullyprotectedMPAs,althoughinpracticethelevelsofprotec-tionaffordedbyMPAexpansionwillvaryacrossspecificpoliciesandregions.Forexample,under30x30theEuropeanUnionhasproposedtoaffordsomelevelofprotectionto30%ofitswaters,whilefullyprotectingonly10%[25].
Inforecastingtheeffectsoffuturefullypro-tectedMPAs,wedonotfavororlimitouranalysistoanyparticularMPAnetworkproposal.Rather,weexplorehowasuiteofalternativeproposedMPAnetworkswouldeachaffectfishingeffort.Weincludeanumberofnetworksthataretheout-putsofglobalprioritizationanalyses.Theseareanetworkthatfocusesonareasbeyondnationaljurisdictioninthehighseas[26],andasuiteofnetworksthatprioritizeeitherbiodiversitypro-tection,carbonsequestration,foodprovision,ormultipleobjectives[20](Fig.2).Wealsoconsideranexpert-designedbottom-upnetworkofEco-logicallyorBiologicallySignificantMarineAreas
(EBSAs)proposedbytheConventiononBiolog-icalDiversity[27].Wefinallyevaluateasetofnetworksthatrandomlyprotectpixelstoachievecertainarea-basedtargets,aswellasnetworksthatprotecteitherthecurrentlymost-fishedareasortheareasthatarecurrentlynotfished.Impor-tantly,eachnetworkdiffersinitsoverlapwithcurrentfishingeffort(Fig.1);forthesameoceancoveragepercentage,somenetworkswouldplaceMPAsinregionswithsignificantlyhighercurrentfishingactivitythanothers(Fig.3).ComparingresultsacrossMPAnetworksthereforeallowsustoexplorenotonlythepotentialimpactoffullyprotecting,forexample,15%oftheocean,butalsowhetheritmatterswhich15%oftheoceanisprotected.
Fishing
hours0101,000100,000
Fig.1:Mapofobservedfishingeffort(hours)in2021,shownusingalog10scaleforvisualiza-tionpurposes.Pixelshavea1x1degreegeographiccoordinateresolution,thespatialunitofouranal-ysis.
Wemakethreedistinctscientificcontributions.First,ourresultscontributetoatimely,interna-tionalpolicydebateontheimpactsoflarge-scaleMPAexpansionandthebestimplementationstrategies.Whilepreviousworkhasmodeledthepotentialimpactsoflarge-scaleexpansionofter-restrialprotectedareasonland[28],nosuchsimilarworkhasmodeledthepotentialimpactsofmarineprotectedareasintheocean.Second,wedevelopanovelmachinelearningtechniqueforpredictingglobalchangesinfishingeffortasaresultofMPAimplementationthatistractable,flexible,anddata-driven.Machinelearningletsusmovebeyondrigidassumptionsaboutthestructureofcomplexeconomicandecologicalinteractionsbecausethealgorithmallowsfornon-linear,data-drivenrelationships[29].WealsousemachinelearningtobuildaplausibleBAUcoun-terfactual,whichallowsforinferencewhenthereisnounaffectedcontrolgroup[30].Finally,ourmodelcanprovideadecision-supporttoolforlocalmarinemanagerstopredicttheeffectsoffuturespatialclosures(fullyprotectedMPAsorotherspatially-explicitfishingprohibitions).Byprovidingmoreclarityonpotentialfishingeffortoutcomes,ourmodelcanhelpmangersreducetheprobabilityofdowngrading,downsizing,anddegazettementoffutureMPAs,thusdecreasingtheuncertaintyandregulatoryburdenassociatedwithMPAexpansion.Importantly,ourmodelisgeneralenoughthatitcouldalsopredictfishingredistributionfromotherspatiotemporalchangessuchasclimatechange.
4
Business?as?usualExpert?derivedEBSAVisallietal.2020
Salaetal.2021biodiversitySalaetal.2021carbonSalaetal.2021food
Salaetal.2021multi?objectiveRandomProtectingmost?fishedpixels
Protectingunfishedpixels
Areaprotected
2.5%3%5%10%
16%20%30%
Fig.2:Mapsofbusiness-as-usual(BAU)networkandhypotheticalglobalMPAnetworksusedinoursimulations.ThefillcoloroftheglobalMPAnetworkmapsisbytheglobalareacoveragesize,andonlypixelsthatarefullyenclosedinMPAsarecolored.TheBAUscenarioholdsfixedtheexistingfullyprotectedMPAcoverageasoftheendof2020(2.5%ofoceanarea).SincetheSalaetal.2021networkscenarios,protectingmost-fishedpixelscenario,andrandom,unfished,andmost-fishedscenarioseachprotectpixelsindescendingorderofpriority,thenetworkforeachareaprotectedsize(3%,5%,10%,16%,20%,and30%)isinclusiveofallpixelsinsmallercoveragesizes.TheVisallietal.2020andexpert-derivedEBSAscenariosareeachonlyavailableforasinglecoveragesize(16%and20%).Pixelshavea1x1degreegeographiccoordinateresolution,thespatialunitofouranalysis.
2Results
Howwellcanagloballytunedmachinelearningmodelactuallypredictfishing?Animportantfirststepinvalidationistotestthepredictionsofourtrainedmodelsagainstout-of-samplefishingeffortdata.Wefindthatthemodelperformswellin
theseout-of-sampletestsandissufficientforourpurposeofpredictingfuturefishingeffortundertheexpansionoffullyprotectedMPAs.Totestthemodel’sabilitytopredictfuturefishingeffort,weperformatemporalout-of-sampletestusingamodeltrainedonearlyyearsofthedatasetandtestedonheld-outlateryearsofthedataset.Using
5
Current
fishinghours
overlapping
with
areaprotected
90%-
80%-
70%-
60%-
50%-
40%-
30%-
20%-
10%-
0%-
Business?as?usual
MPAnetworkscenario
Protectingmost?fishedpixelsSalaetal.2021biodiversitySalaetal.2021carbon
Salaetal.2021multi?objectiveRandom
Salaetal.2021foodExpert?derivedEBSAVisallietal.2020
Protectingunfishedpixels
0%10%20%30%
Areaprotected
Fig.3:Percentofglobalfishingeffort(hours)thatspatiallyoccurswithinpixelsthatwouldbeprotectedbyhypotheticalMPAnetworksversuspercentofglobaloceanareaprotected,coloredbyMPAscenario.ColorsdifferentiatethevarioushypotheticalMPAnetworks.Linetypesareusedtofurtherdifferentiatenetworksthatcanhavevariouslevelsofprotection,whileshapesareusedtodifferentiatenetworksthatonlyhaveasinglelevelofprotection.Thescenariosarelistedinthelegendinthesameorderastheyappearinthefigureattheleveloftheirlargestareaprotected.
thistest,theROCarea-under-the-curveinthefirststagepredictionisapproximately0.97andtheF1scoreisapproximately0.91(Fig.S4AandTableS1).Inthesecondstagepredictionoffishingintensity,theR2isapproximately0.8(Fig.S4BandTableS1).Additionally,acrossperformancemetrics,thereislittlereductioninperformanceaswepredictfishingeffortadditionalyearsintothefuture.Totestthemodel’sabilitytopredictbothfuturefishingeffortandinspatialareasthathaveneverbeforeseenfullyprotectedMPAs,weperformaspatiotemporalout-of-sampletestthatusesasuiteofmodelsforeachoceantrainedonearlyyearsofthedatasetandinotheroceans,andtestedonheld-outlateryearsofthedatasetandintheoceanofinterest.Wedothisleave-one-outtestforeachocean,allowingustoseehowwellthemodelcanpredictfishingeffortinspatialareaswherethemodelhasnotseenanytrainingdata.Again,wefindhighperformanceforthespatiotemporalout-of-sampletesting(Fig.S5),indicatingthatthemodelcanforecastacrossbothtimeandspace.Finally,wetestourmodel’sperformanceagainstaseriesofsimplermodels,againusingtemporalout-of-sampletesting.Wefindthatourmodeloutperformsthesesimpler
modelsacrossallperformancemetrics(Fig.S6).Theseout-of-sampleevaluationsgivecredencetooursubsequentMPAnetworkscenariopredictionsbecausetheMPAnetworkscenariopredictionsconsiderMPAsinfutureyearsandinlocationsthatmaynotyethaveMPAs.
IntheabsenceofanynewMPAs,ourBAUcounterfactualscenariopredictsgreatertotalglobalfishingeffortinthefuturecomparedtocur-rentlyobservedlevels(Fig.4).UnderanyofthehypotheticalMPAexpansionscenarioswecon-sider,ourmodelpredictsthattotalfutureglobalfishingeffortwillinvariablybelowerthantheBAUcounterfactualscenarioofnonewMPAs.TheextentofthisdecreasedependsontheMPAnetworkandthepercentageofoceanareaitencompasses.Forsomescenariossuchasprotect-ingunfishedpixels,“Visallietal.2020”,“Expert-derivedEBSA”,“Random”,andforMPAcover-agelevelsof5%to20%,wefindthatpredictedtotalfishingeffortmayberoughlyequaltoorevenabovethecurrentlevelsweseetoday.However,forotherscenarios,andallscenarioswith30%protection(otherthanprotectingunfishedpix-els),wefindthattotalglobalfishingeffortwouldbebothlowerthanthecurrentlyobservedlevel
6
andlowerthanthepredictedfuturelevelunderbusiness-as-usual.
Intuitively,thedecreaseinfuturetotalfishingfromMPAexpansionissmallestunderthesce-nariosthatextendprotectiontoareasthatarecurrentlyunfished(-0.4%to-6%,darkgraylineinFig.5A).Scenariosthatextendprotectiontoareasthatarecurrentlymost-fishedwouldleadtothelargestdecreaseintotalfishingeffort(-6%to-55%,lightgrayline).Thesetwoscenariosarenotmeanttorepresentplausiblereal-worldMPAnetworks;rather,theyareintendedtodis-playarangeofpossibleeffectsfromthelarge-scaleexpansionoffullyprotectedMPAs.Mostoftheactualproposednetworksresultinreductionsinfishingeffortofabout10%to20%.Twoexcep-tionsare“Salaetal.2021carbon”and“Salaetal.2021biodiversity”,whichhavepredicteddeclinesof37%and38%,respectively,afterthreeyearsandwithfull30%areaprotection.Forallscenarios,asthepercentageofoceanareaprotectedincreases,wepredictincrementallylargerdecreasesintotalfishingeffort.
Wehaveshownthatacrosstherangeofproposedprotectionscenarios(i.e.excludingthe“Most-fished”,“Unfished”,and“Random”sce-narios”),globalfishingeffortislikelytodecrease,andthemagnituderangesfromabout-3%to-38%.WhatdrivesthemagnitudeofpredicteddecreasesfordifferentMPAnetworks?Regardlessofthenetwork’sobjectives,howitwasdesigned,thepercentageoftheoceancovered,orthefore-casthorizon,thekeydriveristheoverlapoftheproposednetworkwithcurrentfishingeffort(Fig.5B).Asthispercentageincreases,weconsistentlypredictlargerdecreasesinglobalfishingeffort.Forinstance,theproposedscenariothatresultsinthesmallestpredicteddecreasecoversonly4%ofcur-rentglobalfishinghours.Similarly,theproposedscenariopromptingthelargestpredicteddecreasecoversthegreatestpercentageofcurrentglobalfishinghours(78%).ThispatternimpliesthattheoverlapbetweencurrentfishingeffortandnewMPAswillplayacrucialroleindeterminingtheimpactsoffutureMPAexpansion.
Crucially,thesereductionsinaggregatefish-ingeffortarisebothinsideandoutsidethenewMPAs.AggregatefishingeffortinsidetheMPAsdiminishesunderallnetworkscenarios;however,itneverdropstozero,eventhoughthesenewMPAsostensiblyprohibitallcommercialfishing
(Figs.S11-S12).AggregatefishingeffortoutsideMPAsalsodecreasesacrossallscenarios,whichdrivesthemajorityoftheglobaldecline(Figs.S11-S12).ThiseffectismostprominentinlocationsclosertoMPAboundaries.PixelslocatedfullyinsidenewMPAsseethelargestmediandecreaseinfishingeffort(-18%),andthismediandecreasebecomessmallerandapproacheszeroasthedis-tanceincreasesfromtheMPAboundary(Fig.6B).Thisspatialdissipationisconsistentwiththebefore-versus-afterchangesweobserveinthehis-toricalrawdatafollowingtheimplementationofrealMPAs(withanobservedmediandecreaseof-57%forpixelsfullyinsidenewMPAs,anddimin-ishingmagnitudechangesasthedistancetothenearestMPAincreases)(Fig.6A).
Howdoourresultscomparetotheconven-tionalwisdom?Thetwomostcommonassump-tionsemployedinthepreviousliteratureare“fulldisplacement”(whereeachunitoffishingeffortcoveredbyanMPAisdisplacedoutsidetheMPA)and“completeexit”(whereeachunitoffishingeffortcoveredbyanMPAdisappears)[19–23].Ourresultssuggestthatneitherofthesehypothesesiscorrect.Instead,wefindthatthelarge-scaleexpansionoffullyprotectedMPAsislikelytotriggeraredistributionoffishingeffort,mostprominentlynearnewMPAsbutwitheffectsthatalsoarisefartheraway,whichinaggregateimplyaglobalreductioninfishing.Furthermore,asfullyprotectedMPAscoverlargerfractionsofcurrentfishingactivity,thisreductionmagnifies,under-scoringtheimportanceofcarefullyconsideringfishers’adaptationtoMPAexpansion.
3Discussion
Theecologicalandeconomicconsequencesoflarge-scaleMPAexpansionwillhingetoalargeextentonhowglobalfishingeffortrespondstoincreasedprotection,yetlittleisknownabouthowthiswillunfold.Understandingthepotentialredistributionoffishingeffort,andthesubse-quentchangesintheaggregatequantityofglobalfishing,isanimportantfirststep.WedevelopedanempiricalglobalmodeltopredicthowfishingactivitywillrespondtochangesinfullyprotectedMPAcoverage.Importantly,ourmodelisgeneralenoughthatitcouldalsobeusedtopredictfish-ingchangesinresponsetootheroceanicchanges,suchasclimatechangeornewfishingregulations.
7
MPAcoverage:3%
MPAcoverage:5%
MPAcoverage:10%
40
20
Fishing
hours
(millions)
0
MPAcoverage:20%
MPAcoverage:30%
40
20
0
MPAcoverage:16%
Business?as?usual
MPAnetworkscenario
ProtectingunfishedpixelsVisallietal.2020
Expert?derivedEBSASalaetal.2021foodRandom
Salaetal.2021multi?objectiveSalaetal.2021carbon
Salaetal.2021biodiversityProtectingmost?fishedpixels
?5?4?3?2?10123?5?4?3?2?10123?5?4?3?2?10123
Forecasthorizon(years)
Fig.4:Totalobservedglobalfishingeffort(hours)(whereforecasthorizons-5to0correspondtoobserveddatafromyears2016to2021),andtotalpredictedglobalfishingeffortinthebusiness-as-usual(BAU)scenarioandallMPAscenariosforthethreepredictedforecasthorizons.Averticaldashedlineisshownat0years(suchthatthelinetotheleftrepresentsobserveddata,andthelinestotherightrepresentpredictions).Ahorizontaldashedlineisshownatthelevelofcurrentlyobservedfishingeffortinthelastyearofhistoricallyobserveddata.EachpanelrepresentsglobalMPAnetworksthataresizedforagivenpercentagecoverage.ColorsandlinetypesdifferentiatethevarioushypotheticalMPAnetworksandtheBAUscenario.TheMPAnetworkscenariosarelistedinthelegendinthesameorderastheyappearinthefigureataforecasthorizonof3yearsandtheirlargestMPAcoverage.
AcrossawiderangeofhypotheticalMPAnet-works,ourkeyfindingisclear:aggregateglobalfishingislikelytodecline,andthemagnitudeofthisdeclineislargelydrivenbytheamountofcurrentfishingactivityinthenewlyprotectedareas.ThisfactorismoreimportantthaneithertheconservationobjectivesoftheMPAnetworkoreventhetotalareaitcovers.Specifically,whennewfullyprotectedMPAsareplacedinregionscurrentlyexperiencingintensefishingactivity,wepredictthemostsubstantialdecreasesintotalfish-ingeffort.WhilepolicymakersmaychoosetoplaceMPAsinlocationswithlimitedfishingactivity—forstrategicreasonssuchasprotectingcriticalhabitats,orforpoliticalreasonssuchasprotect-ingareasthatarecurrentlyunfishedorminimallyfished—ourresultssuggestthatsuchplacementswouldexertminimalimpactonfishers’decisions.Inotherwords:whichpartsoftheoceanareprotectedismoreimportantindeterminingover-allfishingeffortthanhowmuchoftheoceanisprotected.
Ourresultsshowthatnewful
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2020-2022年北京市初三一模道德與法治試題匯編:做守法的公民
- 廣東省深圳市寶安區(qū)文匯學(xué)校2019-2020學(xué)年八年級(jí)第二學(xué)期(3月份)月考數(shù)學(xué)試卷-含解析
- 物理-陜西省安康市2025屆高三下學(xué)期第二次質(zhì)量聯(lián)考(安康二模)試題和答案
- 油漆噴涂施工方案
- 座椅安裝施工方案
- 職業(yè)西藥師知識(shí)培訓(xùn)課件
- 北京征地拆遷合同范例
- 勞務(wù)分包安全合同范例
- 農(nóng)業(yè)社團(tuán)實(shí)踐與體驗(yàn)安排計(jì)劃
- 人力資源部的內(nèi)部安全管理計(jì)劃
- 胸痛中心培訓(xùn)課件胸痛中心救治流程
- 鋼管材質(zhì)證明書
- 2023電動(dòng)船舶直流充換電系統(tǒng)技術(shù)條件
- 2023年廣東廣州市中考語文真題及答案
- GB/T 7939.3-2023液壓傳動(dòng)連接試驗(yàn)方法第3部分:軟管總成
- 世界各國區(qū)號(hào)大全
- 認(rèn)識(shí)醫(yī)生和護(hù)士PPT完整版
- 第四章 新聞職業(yè)道德失范:虛假新聞1
- 護(hù)士延續(xù)注冊(cè)體檢表通用
- 高標(biāo)準(zhǔn)農(nóng)田建設(shè)勘測(cè)可研規(guī)劃設(shè)計(jì)與預(yù)算編制技術(shù)方案
- 穿堤涵閘工程施工方案
評(píng)論
0/150
提交評(píng)論