2025汽車行業(yè)的人工智能(AI)機(jī)遇研究報(bào)告 The AI opportunity in Automotive_第1頁
2025汽車行業(yè)的人工智能(AI)機(jī)遇研究報(bào)告 The AI opportunity in Automotive_第2頁
2025汽車行業(yè)的人工智能(AI)機(jī)遇研究報(bào)告 The AI opportunity in Automotive_第3頁
2025汽車行業(yè)的人工智能(AI)機(jī)遇研究報(bào)告 The AI opportunity in Automotive_第4頁
2025汽車行業(yè)的人工智能(AI)機(jī)遇研究報(bào)告 The AI opportunity in Automotive_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

TheAIopportunity

inAutomotive

February2025

Afewkeypoints

ThispresentationhasbeendevelopedincollaborationbetweentheStrategy&team,PwC’sglobalstrategyhouse,alongsideourPwC

industryandfunctionexperts.Together,wetransformorganizationsbydevelopingactionablestrategiesthatdeliversustainableoutcomes.

?2025PwC.Allrightsreserved.PwCreferstothePwCnetworkand/oroneormoreofitsmemberfirms,eachofwhichisaseparatelegalentity.Pleasesee/structureforfurtherdetails.

TheAIopportunityinAutomotive

Strategy&2

AIallowsautoplayerstostrengthentop-and

bottomlineinturbulenttimes–iftakenseriously

OurhypothesesonAIinAutomotive

AIiscominginwavesanditsimpactisnotasanticipated

AIcapabilitiesareevolvingfromgenerativetoagenticAI,yetrealizingbottom-lineimpactistakinglongerthanoptimistshadhoped

2345

AIwillboostkeytransformationareasoftheautomotiveandmobilitysector

Valuewillbeparticularlycreatedintechnology-drivenfieldsofinnovationsuchassoftware-defined,autonomousandelectricvehicles

AIusecasesemergeacrossthevaluechain,butwithdifferenttimehorizons

Highestshort-termimpactisseenincustomerassistance/experience,softwaredevelopmentandselectedcorporatefunctions

AIbringssignificantbottom-lineopportunities,ifeffectivelycoordinatedacrossthecompany

OuranalysissuggeststhataholisticAItransformationstrategycanrealizeapotentialmarginupliftof40-60%

AIunleashesitspotentialatscaleinpartnershipsthatgobeyondthetraditional“buildapproach”

WinnersstartwithfoundationalAIwork,focuspromptlyonmajorcost/revenuecategories,andscaleefficientlywithapartnerecosystem

TheAIopportunityinAutomotiveAbbreviation:AI=ArtificialIntelligence

Strategy&Source:Strategy&analysis3

AIismovingfromhypetoreality,thoughtheurgencytoactremainshigh

EvolutionofexpectedAIimpact

Expectedimpact

Physical/human-likeAI

Generative/agenticAI

Disruptivescenario

Narrow/perceptiveAI

2024/2025-NewgenerationofGenAIaspeakdevelopment

2022-OpenAIlaunches

ChatGPT

Base

scenario

2020-OpenAIlaunchesgenerativeAIGPT3

1997-ComputerdeepbluedefeatschampionKasparovatchess

2014-Amazonlaunches

intelligentvirtualassistantAlexathatcompletesshoppingtasks

2011-ComputerWatsonwins1stplaceinQ&ATVshowJeopardy&ApplelaunchesSirivirtualassistant

Time

2000202020252030

RealisticAIevolutionscenariosrequiringimmediateactionbyCEOs

?FastdevelopmenttowardagenticandphysicalAI

?WideAIadoptionforproducts,businessmodelsandprocesses

?Reshapingentireindustriesin

combinationwithothertechnologies

?RegulationorcosthinderfurtherAIadvancements

?Usecasesscalingupinselectedhigh-valueareas

?Overallimpactlagsbehindoverhypedexpectations

AIstrategyrequiredforrisk

hedgingandbusinesscontinuity

–withrapidaccelerationofAIeffortstoexploitwindowofopportunity

AIstrategyasacceleratorforefficiencygains

–withupsidepotentialtosecure

differentiationandnewvaluepools

TheAIopportunityinAutomotiveStrategy&

Note:Narrow/perceptiveAIisspecializedforlimitedtaskswithsensorycapabilities,suchasvoiceorimageprocessing,withoutgeneralreasoningskills.Generative/agenticAIcreatesnewcontentbasedonlearnedpatterns–inamoredevelopedstage,itactsautonomouslyandmakesdecisionsbasedonprogrammedobjectivesandenvironmentalinputs.Physical/human-likeAImimicshumanactionsorbehaviours,oftenembodiedinrobots,forinteractingwiththephysicalworld.

Source:Strategy&analysis4

InAutomotive,AIwillboostalltechnology-driveninnovationareas

AIimpactandcompanyexamplesinautomotivetransformationareas

Principal

challenges

AIsolutionsfordifferentplayertypes

Suppliers

OEMs

Mobilityproviders

Software-definedandautonomousvehicles

UpgradeSWdevelopment,digitalCXandcybersecurity

Impact

Example

E2Edevelopmentplatform

NVIDIA

Personalizeddigitalin-carexperience

Tesla

Sensordata

processingforAD

Waymo

Alternativedrivetrainsandsustainability

Managedemanduncertainty,infrastructureandregulation

Impact

Example

Optimizedbatterymanagement

Bosch

AutomaticEVchargingrobot

Hyundai

EnhancedEV

chargingschedule

Free2Move

Newservicesandbusinessmodels

Buildcustomer-centricorg.and

maximizecustomerlifetimevalue

Impact

Example

Roadassessmentservice

Michelin

Automatedusedcarevaluation

Auto1

Dynamicroutepricing

Uber

Digitaloperationsandsupplychain

Increaseefficiencywithout

compromisingqualityandsafety

Example

Impact

Customerbehavioranalytics

CoxAutomotive

Video-basedqualitycontrol

BMW

High-demandareaprediction

Grab

TheAIopportunityinAutomotiveStrategy&

DegreeofexpectedAIimpactspecifictotransformationareaandplayergroup.Themorethebarisfilled,thehighertheimpact

Note:Exemplarycompany-specificAIsolutions.Abbreviations:SW=Software,E2E=End-to-end,AD=Autonomousdriving,EV=Electricvehicle,Org.=organization

Source:Strategy&analysis,companywebsites(retrieved01/2025)andpressreleases(published03/2023-12/2024)5

ExtractfromStrategy&proprietaryAIusecaselibrary

AIusecaseshavevaluepotentialacrosstheautomotivevaluechain

AIusecaseexamplesfortheautomotiveindustry

Valuechain

Data

assets

Use

cases

Researchanddevelopment

Productionandsupplychain

Sales,marketingandaftersales

Mobilityand

financialservices

Connectedand

automatedservices

Customer360。

Ecosystem360。

息Plant/supplychain360。

Product360。

Vehicle360。

Automatedvehiclesoftwaregenerationandtesting

Generativevehicle/partsdesign

Generativebatteryengineering

Automatedproduct

life-cyclemanagement

R&Dprojectprioritizationandperformanceimprovement

Automatedvisualfactory

controlandassetpositioning

Co-bot/robotapplications

Predictivemaintenanceofassets

End-to-endsupplychain/materialdispositionRPA

Supplychainlogistics

optimizationandriskmitigation

Automatedmarketingcontentgenerationandcampaigning

Virtualcustomerservicecenters/assistants

Predictivediagnostics

andwarrantyoptimization

Personalizedvehicle

configurationandpricing

Fleetsalesco-pilot

Batterystateofhealthandresidualvalueestimation

Visualinspectionandresidualvaluecalculationofusedcars

Adaptivemobility-as-a-servicefleetmanagement

Multi-modalticketing

andpaymentoptimization

Last-miletransportationoptimization

Electricvehicleenergy/chargingoptimization

Automateddrivingoptimization

In-vehiclepersonalassistantandexperienceoptimization

Intelligentdrivercare

Smartnavigationandparkingservices

Corporatefunctions

Use

cases

Overallandsupportfunctions(e.g.strategy,planning,M&A,IT,finance,HR)

Targetcompanyvaluationfornon-bindingoffer

Automatedmonitoring

regulatorycompliance

EmissionmonitoringAutomationofaccountspayable

Cybersecurityriskdetection

andmitigation…

TheAIopportunityinAutomotiveMainusecasevaluelever:EfficiencyGrowth

Strategy&Source:Strategy&analysis.Abbreviations:R&D=Researchanddevelopment,RPA=RoboticProcessAutomation6

BasedonStrategy&AIimpactcalculator

Ouranalysissuggestspotential40-60%marginupliftduetoAI

EstimationofAIimpactacrosstheautomotivevaluechain(indexedoperatingmarginin%)

140-160

8-12

40%-60%7-10

operatingmarginuplift

potentialduetoAI7-9

10-13

8-10

1004-6

6-9

OperatingmarginResearchandSupplychainProductionSupportSales,marketingMobilityandConnectedandOperatingmargin

beforeAI

(100%index)

developmentfunctionsandaftersalesfinancialservicesautomatedservicesafterAI

TheAIopportunityinAutomotiveStrategy&

Note:1)ThepotentialAIimpactontheoperatingmarginisestimatedmainlyfromanmanufacturer/supplierperspective.2)Totalimpactislowerthanthesumofindividualvalueblocksduetooverlaps.3)ValueperblockisdrivenbyAIimpactperfunction(in%)andafunction’srevenue/costshareontotaloperatingmargin.BasisforthecalculationsoftheimpactperfunctionareAIusecasesrelevantfortheautomotiveindustryafterconsideringcostefficienciesandrevenueuplifts.

4)SupportfunctionsincludeIT,HR,finance,legalandM&A

Source:Strategy&analysis

7

TailoredAIgovernanceiskeytoeffectivescale-upacrossthecompany

DataandAIgovernanceoptionswithzoom-inonthe“Hubandspoke”model

Decentralizedmodel“Hubandspoke”modelCentralizedmodel

Group

Group

Group

Coordinationareas

HubSpokes

Implicationsonresponsibilitiesofhubvs.spoketeams(selection)

Strategyandprocesses

Visionandtargets

Hub:Targetsetting,organizationalchanges,processblueprints

Spoke:Data/AIstrategyoperationalization,businessunit/functionaltargets

Operatingmodel

Usecases

Portfoliomanagement

Hub:Targetportfoliostructure,budgetandmonitoring,lighthouseusecases

Spoke:Domain-specificusecaseprioritization,developmentanddeployment

Developmentandimplementation

Datamanagement

Dataprocessingandusage

Hub:Data/AIcomplianceandguidelines,datastandards/catalogue

Spoke:Dataqualityassurance,datastewards,dataaccessmanagement

Regulationandpolicies

Capabilitiesandculture

Awarenessandcommunication

Hub:Foundationaltraining,bestpracticesharing,communitybuilding

Spoke:Capabilitydevelopmentandtrainingspecifictobusinessunit/function

Training

Technology

Tools

Spoke:Specifictechnicalrequirementdefinition,specifictooloperations

Hub:Infrastructureandplatform/toolprovision,technologypartnering

Platformandinfrastructure

TheAIopportunityinAutomotiveStrategy&

mmData/AIcapabilities.Business(functions/countries)PowerbalanceNote:The"hubandspoke”modelfordata/AIgovernanceinvolvesaleancentralteamprovidingcoreservices(“hub”)anddecentral/dedicatedbusinessteamsoperationalizingsolutions(“spokes”withdottedreportingtothehub).Therightdegreeofcentralizationofcoordinationareasdependsonthespecificcompanysituation

Source:Strategy&analysis8

Tosucceedfromstarttoscale,aholisticviewonAIanddataiscrucial

Strategy&provendataandAIframework

Approach

B

A

Aspiration

(Why?)

Vision/ambitionMaturity

Strategy

Usecases

(What?)

Exploration

Development

Impact

C

Enterprise

(How?)

Governance&org

Capabilities&processes

Architecture&techSkills&culture

D

Roadmap

(Whichway?)

SuccessfactorsExecutionplan

Selectedsuccessfactors

RecalibrateexistingdataandAIactivitiestostayahead

Refinedatastrategyconsidering(Gen)AI,adjustusecasetargetportfolio,andidentifyimplicationsforoveralldigital/ITtransformationprogram

TrustedAIiskeytoaddressingethicalandregulatorychallenges

EstablishandmonitorcomprehensivetrustframeworkalongAIusecaseplanning,data,model,validationanddeployment

AIactivitiesrequirecollaborationwithexternalpartners

Data/AIexpertsareinshortsupplyandalgorithmsarecomplex–work

withpartnersforspeedandefficiency,yetwithoutcreatingdependencies

EveryusecasemayrequireadifferentAIsetup

AIisnotonesoftwaresuite,butarangeoftools/vendorspossess

differentstrengths–theentireAIplayerlandscapeshouldbeutilized

CultureiscrucialinimplementingAIsuccessfully

AIisusuallydescribedintechnicalterms–butcreatingaculturethatencouragesemployeestolearnandexperimentwithAItoolsisvital

TheAIopportunityinAutomotive

Strategy&Source:Strategy&analysis9

Front-runnersmovequicklyfromAIfoundationtothebig-ticketitems

DataandAIdevelopmentstagesfromstarttoscale

Maingoals

Main

usecaseattributes

(with

examples)

“STARTwithbasics”

Shortterm(1-2years)

?Known,measurableandfastresults

?Pilotsandlighthouses

?Resourcesfreed-upfornextlevel

?Internaltaskswithhighautomationpotential

?End-userserviceswith“wow-effect”

Automatedvehiclesoftwaregenerationandtesting

?Internalstructureddatabasis

Virtualcustomerservicecenters/assistants

“GROWwithbigtickets”

Mediumterm(3-5years)

?Complex,multi-stepcoreprocesses

?Personalized/relevantend-userexperience

?Internalunstructureddatabasis

In-vehiclepersonalassistant

Generativevehicle/partsdesign

?Significantbusinessvalue

?Collaborationacrossbusinessunits

?Push-and-pullculture

“SCALEwithmajorchange”

Longterm(5+years)

?Majorbusiness/operatingmodelchange

?Valuecreationwithother

industrysectors

?Multi-domainandmulti-ownerdatabasis

Co-botmanufacturingapplications

Scaledautomateddriving

?Data/modelefficiency

?Competitivedifferentiation

?Partnerecosystem

I

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論