高考熱點(diǎn):函數(shù)大題_第1頁(yè)
高考熱點(diǎn):函數(shù)大題_第2頁(yè)
高考熱點(diǎn):函數(shù)大題_第3頁(yè)
高考熱點(diǎn):函數(shù)大題_第4頁(yè)
高考熱點(diǎn):函數(shù)大題_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1/12函數(shù)大題【高考真題重溫】1.【新課標(biāo)全國(guó)理,21】已知函數(shù),曲線在點(diǎn)處的切線方程為.(Ⅰ)求,的值;(Ⅱ)如果當(dāng),且時(shí),,求的取值范圍.2.【新課標(biāo)全國(guó)文,21】已知函數(shù),曲線在點(diǎn)處的切線方程為.(Ⅰ)求,的值;(Ⅱ)證明:當(dāng),且時(shí),.3.【新課標(biāo)全國(guó)理,21】設(shè)函數(shù).(1)若,求的單調(diào)區(qū)間;(2)若當(dāng)時(shí),求的取值范圍.4.【新課標(biāo)全國(guó)文,21】設(shè)函數(shù).(Ⅰ)若,求的單調(diào)區(qū)間;(Ⅱ)若當(dāng)≥0時(shí)≥0,求的取值范圍.時(shí)<0,即<0.綜合得的取值范圍為.5.【新課標(biāo)全國(guó)理】(本小題滿(mǎn)分12分)已知函數(shù)滿(mǎn)足滿(mǎn)足;(1)求的解析式及單調(diào)區(qū)間;(2)若,求的最大值。6.【新課標(biāo)全國(guó)文】設(shè)函數(shù)f(x)=ex-ax-2(Ⅰ)求f(x)的單調(diào)區(qū)間(Ⅱ)若a=1,k為整數(shù),且當(dāng)x>0時(shí),(x-k)f′(x)+x+1>0,求k的最大值【命題意圖猜想】1.近三年的高考試題基本上形成了一個(gè)模式,第一問(wèn)求解函數(shù)的解析式,以切線方程、極值點(diǎn)或者最值、單調(diào)區(qū)間等為背景得到方程進(jìn)而確定解析式,或者給出解析式探索函數(shù)的最值、極值、單調(diào)區(qū)間等問(wèn)題,較為簡(jiǎn)單;第二問(wèn)均為和不等式相聯(lián)系,考查不等式恒成立問(wèn)題、證明不等式等綜合問(wèn)題,難度較大.預(yù)測(cè)函數(shù)大題,以對(duì)數(shù)函數(shù)、指數(shù)函數(shù)、反比例函數(shù)以及一次函數(shù)、二次函數(shù)中的兩個(gè)或者三個(gè)為背景,組合成一個(gè)函數(shù),然后考查函數(shù)的性質(zhì),與不等式相結(jié)合時(shí)一個(gè)永恒的話題.2.從近幾年的高考試題來(lái)看,利用導(dǎo)數(shù)來(lái)研究函數(shù)的單調(diào)性和極值問(wèn)題已成為炙手可熱的考點(diǎn),既有小題,也有解答題,小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,解答題主要考查導(dǎo)數(shù)與函數(shù)單調(diào)性,或方程、不等式的綜合應(yīng)用.預(yù)測(cè)高考仍將以利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值為主要考向.【最新考綱解讀】1.導(dǎo)數(shù)概念及其幾何意義(1)了解導(dǎo)數(shù)概念的實(shí)際背景.(2)理解導(dǎo)數(shù)的幾何意義.2.導(dǎo)數(shù)的運(yùn)算(1)能根據(jù)導(dǎo)數(shù)定義,求函數(shù)y=c,y=x,y=x2,y=eq\f(1,x),(理)y=eq\r(x)的導(dǎo)數(shù).(2)能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù),(理)能求簡(jiǎn)單的復(fù)合函數(shù)(僅限于形如f(ax+b))的導(dǎo)數(shù).(3)會(huì)使用導(dǎo)數(shù)公式表.3.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(1)結(jié)合實(shí)例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過(guò)三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間.(2)結(jié)合函數(shù)的圖象,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會(huì)用導(dǎo)數(shù)求不超過(guò)三次的多項(xiàng)式函數(shù)的極大值、極小值,以及閉區(qū)間上不超過(guò)三次的多項(xiàng)式函數(shù)最大值、最小值;體會(huì)導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性.4.生活中的優(yōu)化問(wèn)題舉例.例如,通過(guò)使利潤(rùn)最大、用料最省、效率最高等優(yōu)化問(wèn)題,體會(huì)導(dǎo)數(shù)在解決實(shí)際問(wèn)題中的作用.【回歸課本整合】導(dǎo)數(shù)的定義:設(shè)函數(shù)在處附近有定義,當(dāng)自變量在處有增量時(shí),則函數(shù)相應(yīng)地有增量,如果時(shí),與的比(也叫函數(shù)的平均變化率)有極限即無(wú)限趨近于某個(gè)常數(shù),我們把這個(gè)極限值叫做函數(shù)在處的導(dǎo)數(shù),記作,即.注意:在定義式中,設(shè),則,當(dāng)趨近于時(shí),趨近于,因此,導(dǎo)數(shù)的定義式可寫(xiě)成.導(dǎo)數(shù)的幾何意義:導(dǎo)數(shù)是函數(shù)在點(diǎn)的處瞬時(shí)變化率,它反映的函數(shù)在點(diǎn)處變化的快慢程度.它的幾何意義是曲線上點(diǎn)()處的切線的斜率.因此,如果在點(diǎn)可導(dǎo),則曲線在點(diǎn)()處的切線方程為注意:“過(guò)點(diǎn)的曲線的切線方程”與“在點(diǎn)處的切線方程”是不相同的,后者必為切點(diǎn),前者未必是切點(diǎn).導(dǎo)數(shù)的物理意義:函數(shù)在點(diǎn)處的導(dǎo)數(shù)就是物體的運(yùn)動(dòng)方程在點(diǎn)時(shí)刻的瞬時(shí)速度,即4.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù):(為常數(shù));();;;;;;.5.求導(dǎo)法則:法則:;法則:,;法則:.6.復(fù)合函數(shù)的導(dǎo)數(shù):設(shè)函數(shù)在點(diǎn)處有導(dǎo)數(shù),函數(shù)在點(diǎn)的對(duì)應(yīng)點(diǎn)處有導(dǎo)數(shù),則復(fù)合函數(shù)在點(diǎn)x處也有導(dǎo)數(shù),且或7.導(dǎo)數(shù)與函數(shù)的單調(diào)性1)函數(shù)在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果,那么函數(shù)在這個(gè)區(qū)間上是增函數(shù),該區(qū)間是函數(shù)的增區(qū)間;若,那么函數(shù)在這個(gè)區(qū)間上是減函數(shù),該區(qū)間是函數(shù)的減區(qū)間.2)利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟:求;確定在內(nèi)符號(hào);若在上恒成立,則在上是增函數(shù);若在上恒成立,則在上是減函數(shù)8.導(dǎo)數(shù)與函數(shù)的極(最)值1)極大值:一般地,設(shè)函數(shù)在點(diǎn)附近有定義,如果對(duì)附近的所有的點(diǎn),都有,就說(shuō)是函數(shù)的一個(gè)極大值,記作極大值,是極大值點(diǎn).2)極小值:一般地,設(shè)函數(shù)在附近有定義,如果對(duì)附近的所有的點(diǎn),都有就說(shuō)是函數(shù)的一個(gè)極小值,記作極小值,是極小值點(diǎn).3)極值:極大值與極小值統(tǒng)稱(chēng)為極值在定義中,取得極值的點(diǎn)稱(chēng)為極值點(diǎn),極值點(diǎn)是自變量的值,極值指的是函數(shù)值請(qǐng)注意以下幾點(diǎn):()極值是一個(gè)局部概念由定義,極值只是某個(gè)點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是最大或最小.并不意味著它在函數(shù)的整個(gè)的定義域內(nèi)最大或最小.()函數(shù)的極值不是唯一的即一個(gè)函數(shù)在某區(qū)間上或定義域內(nèi)極xs大值或極小值可以不止一個(gè).()極大值與極小值之間無(wú)確定的大小關(guān)系即一個(gè)函數(shù)的極大值未必大于極小值,如下圖所示,是極大值點(diǎn),是極小值點(diǎn),而>.()函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn)而使函數(shù)取得最大值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn).4.當(dāng)在點(diǎn)連續(xù)時(shí),判別是極大、極小值的方法:若滿(mǎn)足,且在的兩側(cè)的導(dǎo)數(shù)異號(hào),則是的極值點(diǎn),是極值,并且如果在兩側(cè)滿(mǎn)足“左正右負(fù)”,則是的極大值點(diǎn),是極大值;如果在兩側(cè)滿(mǎn)足“左負(fù)右正”,則是的極小值點(diǎn),是極小值.5.求可導(dǎo)函數(shù)的極值的步驟:確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù);求方程的根;用函數(shù)的導(dǎo)數(shù)為的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開(kāi)區(qū)間,并列成表格.檢查在方程根左右的值的符號(hào),如果左正右負(fù),那么在這個(gè)根處取得極大值;如果左負(fù)右正,那么在這個(gè)根處取得極小值;如果左右不改變符號(hào),那么在這個(gè)根處無(wú)極值.如果函數(shù)在某些點(diǎn)處連續(xù)但不可導(dǎo),也需要考慮這些點(diǎn)是否是極值點(diǎn).9.函數(shù)的最大值和最小值:一般地,在閉區(qū)間上連續(xù)的函數(shù)在上必有最大值與最小值.注意:在開(kāi)區(qū)間內(nèi)連續(xù)的函數(shù)不一定有最大值與最小值.如函數(shù)在內(nèi)連續(xù),但沒(méi)有最大值與最小值;函數(shù)的最值是比較整個(gè)定義域內(nèi)的函數(shù)值得出的;函數(shù)的極值是比較極值點(diǎn)附近函數(shù)值得出的.函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件.函數(shù)在其定義區(qū)間上的最大值、最小值最多各有一個(gè),而函數(shù)的極值可能不止一個(gè),也可能沒(méi)有一個(gè).10.利用導(dǎo)數(shù)求函數(shù)的最值步驟:由上面函數(shù)的圖象可以看出,只要把連續(xù)函數(shù)所有的極值與定義區(qū)間端點(diǎn)的函數(shù)值進(jìn)行比較,就可以得出函數(shù)的最值了.設(shè)函數(shù)在上連續(xù),在內(nèi)可導(dǎo),則求在上的最大值與最小值的步驟如下:求在內(nèi)的極值;將的各極值與、比較得出函數(shù)在上的最值p【方法技巧提煉】1.利用導(dǎo)數(shù)求切線問(wèn)題中的“在”與“過(guò)”在解決曲線的切線問(wèn)題時(shí),利用導(dǎo)數(shù)求切線的斜率是非常重要的一類(lèi)方法.在求解過(guò)程中特別注意:曲線在某點(diǎn)處的切線若有則只有一條,曲線過(guò)某點(diǎn)的要切線往往不止一條;切線與曲線的公共點(diǎn)不一定只有一個(gè).因此在審題時(shí)應(yīng)首先判斷是“在”還是“過(guò)”.若“在”,利用該點(diǎn)出的導(dǎo)數(shù)為直線的斜率,便可直接求解;若“過(guò)”,解決問(wèn)題關(guān)鍵是設(shè)切點(diǎn),利用“待定切點(diǎn)法”,即:設(shè)點(diǎn)A(x,y)是曲線y=f(x)上的一點(diǎn),則以A為切點(diǎn)的切線方程為y-y=f,再根據(jù)題意求出切點(diǎn).2.利用導(dǎo)數(shù)處理恒成立問(wèn)題不等式在某區(qū)間的恒成立問(wèn)題,可以轉(zhuǎn)化為求函數(shù)在區(qū)間上的最值問(wèn)題來(lái)解決,函數(shù)的最值問(wèn)題的求解,利用求導(dǎo)分析函數(shù)單調(diào)性是常規(guī)途徑,例如:①為增函數(shù)(為減函數(shù)).②在區(qū)間上是增函數(shù)≥在上恒成立;在區(qū)間上為減函數(shù)≤在上恒成立.3.利用導(dǎo)數(shù),如何解決函數(shù)與不等式大題在高考題的大題中,每年都要設(shè)計(jì)一道函數(shù)大題.在函數(shù)的解答題中有一類(lèi)是研究不等式或是研究方程根的情況,基本的題目類(lèi)型是研究在一個(gè)區(qū)間上恒成立的不等式(實(shí)際上就是證明這個(gè)不等式),研究不等式在一個(gè)區(qū)間上成立時(shí)不等式的某個(gè)參數(shù)的取值范圍,研究含有指數(shù)式、對(duì)數(shù)式、三角函數(shù)式等超越式的方程在某個(gè)區(qū)間上的根的個(gè)數(shù)等,這些問(wèn)題依據(jù)基礎(chǔ)初等函數(shù)的知識(shí)已經(jīng)無(wú)能為力,就需要根據(jù)導(dǎo)數(shù)的方法進(jìn)行解決.使用導(dǎo)數(shù)的方法研究不等式和方程的基本思路是構(gòu)造函數(shù),通過(guò)導(dǎo)數(shù)的方法研究這個(gè)函數(shù)的單調(diào)性、極值和特殊點(diǎn)的函數(shù)值,根據(jù)函數(shù)的性質(zhì)推斷不等式成立的情況以及方程實(shí)根的個(gè)數(shù).因?yàn)閷?dǎo)數(shù)的引入,為函數(shù)問(wèn)題的解決提供了操作工具.因此入手大家比較清楚,但是深入解決函數(shù)與不等式相結(jié)合的題目時(shí),往往一籌莫展.原因是找不到兩者的結(jié)合點(diǎn),不清楚解決技巧.解題技巧總結(jié)如下(1)樹(shù)立服務(wù)意識(shí):所謂“服務(wù)意識(shí)”是指利用給定函數(shù)的某些性質(zhì)(一般第一問(wèn)先讓解決出來(lái)),如函數(shù)的單調(diào)性、最值等,服務(wù)于第二問(wèn)要證明的不等式.(2)強(qiáng)化變形技巧:所謂“強(qiáng)化變形技巧”是指對(duì)于給出的不等式直接證明無(wú)法下手,可考慮對(duì)不等式進(jìn)行必要的等價(jià)變形后,再去證明.例如采用兩邊取對(duì)數(shù)(指數(shù)),移項(xiàng)通分等等.要注意變形的方向:因?yàn)橐煤瘮?shù)的性質(zhì),力求變形后不等式一邊需要出現(xiàn)函數(shù)關(guān)系式.(3)巧妙構(gòu)造函數(shù):所謂“巧妙構(gòu)造函數(shù)”是指根據(jù)不等式的結(jié)構(gòu)特征,構(gòu)造函數(shù),利用函數(shù)的最值進(jìn)行解決.在構(gòu)造函數(shù)的時(shí)候靈活多樣,注意積累經(jīng)驗(yàn),體現(xiàn)一個(gè)“巧妙”.【考場(chǎng)經(jīng)驗(yàn)分享】1.利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性需注意的幾個(gè)問(wèn)題(1)確定函數(shù)的定義域,解決問(wèn)題的過(guò)程中,只能在函數(shù)的定義域內(nèi),通過(guò)討論導(dǎo)數(shù)的符號(hào),來(lái)判斷函數(shù)的單調(diào)區(qū)間.(2)在對(duì)函數(shù)劃分單調(diào)區(qū)間時(shí),除了必須確定使導(dǎo)數(shù)等于0的點(diǎn)外,還要注意定義區(qū)間內(nèi)的不連續(xù)點(diǎn)或不可導(dǎo)點(diǎn).(3)注意在某一區(qū)間內(nèi)f′(x)>0(或f′(x)<0)是函數(shù)f(x)在該區(qū)間上為增(或減)函數(shù)的充分條件.2.可導(dǎo)函數(shù)的極值(1)極值是一個(gè)局部性概念,一個(gè)函數(shù)在其定義域內(nèi)可以有許多個(gè)極大值和極小值,在某一點(diǎn)的極小值也可能大于另一點(diǎn)的極大值,也就是說(shuō)極大值與極小值沒(méi)有必然的大小關(guān)系.(2)若f(x)在(a,b)內(nèi)有極值,那么f(x)在(a,b)內(nèi)絕不是單調(diào)函數(shù),即在某區(qū)間上單調(diào)增或減的函數(shù)沒(méi)有極值.3.如果一個(gè)函數(shù)單調(diào)性相同的區(qū)間不止一個(gè),這些區(qū)間之間不能用“∪”連接,只能用逗號(hào)或“和”字隔開(kāi),如把增區(qū)間寫(xiě)為“(-∞,-eq\f(2,3))∪(1,+∞)”是不正確的,因?yàn)椤?-∞,-eq\f(2,3))∪(1,+∞)”不是一個(gè)區(qū)間,該函數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論