魯迅美術學院《深度學習與計算機視覺》2023-2024學年第二學期期末試卷_第1頁
魯迅美術學院《深度學習與計算機視覺》2023-2024學年第二學期期末試卷_第2頁
魯迅美術學院《深度學習與計算機視覺》2023-2024學年第二學期期末試卷_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記。…………密………………封………………線…………第1頁,共1頁魯迅美術學院《深度學習與計算機視覺》

2023-2024學年第二學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、假設要預測一個時間序列數(shù)據(jù)中的突然變化點,以下哪種方法可能是最合適的?()A.滑動窗口分析,通過比較相鄰窗口的數(shù)據(jù)差異來檢測變化,但窗口大小選擇困難B.基于統(tǒng)計的假設檢驗,如t檢驗或方差分析,但對數(shù)據(jù)分布有要求C.變點檢測算法,如CUSUM或Pettitt檢驗,專門用于檢測變化點,但可能對噪聲敏感D.深度學習中的異常檢測模型,能夠自動學習變化模式,但需要大量數(shù)據(jù)訓練2、某研究需要對音頻信號進行分類,例如區(qū)分不同的音樂風格。以下哪種特征在音頻分類中經(jīng)常被使用?()A.頻譜特征B.時域特征C.時頻特征D.以上特征都常用3、無監(jiān)督學習算法主要包括聚類和降維等方法。以下關于無監(jiān)督學習算法的說法中,錯誤的是:聚類算法將數(shù)據(jù)分成不同的組,而降維算法則將高維數(shù)據(jù)映射到低維空間。那么,下列關于無監(jiān)督學習算法的說法錯誤的是()A.K均值聚類算法需要預先指定聚類的個數(shù)K,并且對初始值比較敏感B.層次聚類算法可以生成樹形結構的聚類結果,便于直觀理解C.主成分分析是一種常用的降維算法,可以保留數(shù)據(jù)的主要特征D.無監(jiān)督學習算法不需要任何先驗知識,完全由數(shù)據(jù)本身驅(qū)動4、假設我們有一個時間序列數(shù)據(jù),想要預測未來的值。以下哪種機器學習算法可能不太適合()A.線性回歸B.長短期記憶網(wǎng)絡(LSTM)C.隨機森林D.自回歸移動平均模型(ARMA)5、機器學習中的算法選擇需要考慮多個因素。以下關于算法選擇的說法中,錯誤的是:算法選擇需要考慮數(shù)據(jù)的特點、問題的類型、計算資源等因素。不同的算法適用于不同的場景。那么,下列關于算法選擇的說法錯誤的是()A.對于小樣本數(shù)據(jù)集,優(yōu)先選擇復雜的深度學習算法B.對于高維度數(shù)據(jù),優(yōu)先選擇具有降維功能的算法C.對于實時性要求高的任務,優(yōu)先選擇計算速度快的算法D.對于不平衡數(shù)據(jù)集,優(yōu)先選擇對不平衡數(shù)據(jù)敏感的算法6、假設正在進行一項時間序列預測任務,例如預測股票價格的走勢。在選擇合適的模型時,需要考慮時間序列的特點,如趨勢、季節(jié)性和噪聲等。以下哪種模型在處理時間序列數(shù)據(jù)時具有較強的能力?()A.線性回歸模型,簡單直接,易于解釋B.決策樹模型,能夠處理非線性關系C.循環(huán)神經(jīng)網(wǎng)絡(RNN),能夠捕捉時間序列中的長期依賴關系D.支持向量回歸(SVR),對小樣本數(shù)據(jù)效果較好7、強化學習中的智能體通過與環(huán)境的交互來學習最優(yōu)策略。以下關于強化學習的說法中,錯誤的是:強化學習的目標是最大化累計獎勵。智能體根據(jù)當前狀態(tài)選擇動作,環(huán)境根據(jù)動作反饋新的狀態(tài)和獎勵。那么,下列關于強化學習的說法錯誤的是()A.Q學習是一種基于值函數(shù)的強化學習算法B.策略梯度算法是一種基于策略的強化學習算法C.強化學習算法只適用于離散動作空間,對于連續(xù)動作空間不適用D.強化學習可以應用于機器人控制、游戲等領域8、在進行特征工程時,如果特征之間存在共線性,即一個特征可以由其他特征線性表示,以下哪種方法可以處理共線性?()A.去除相關特征B.對特征進行主成分分析C.對特征進行標準化D.以上都可以9、想象一個市場營銷的項目,需要根據(jù)客戶的購買歷史、瀏覽行為和人口統(tǒng)計信息來預測其未來的購買傾向。同時,要能夠解釋模型的決策依據(jù)以指導營銷策略的制定。以下哪種模型和策略可能是最適用的?()A.建立邏輯回歸模型,通過系數(shù)分析解釋變量的影響,但對于復雜的非線性關系可能不敏感B.運用決策樹集成算法,如梯度提升樹(GradientBoostingTree),準確性較高,且可以通過特征重要性評估解釋模型,但局部解釋性相對較弱C.采用深度學習中的多層卷積神經(jīng)網(wǎng)絡,預測能力強,但幾乎無法提供直觀的解釋D.構建基于規(guī)則的分類器,明確的規(guī)則易于理解,但可能無法處理復雜的數(shù)據(jù)模式和不確定性10、在機器學習中,模型的可解釋性也是一個重要的問題。以下關于模型可解釋性的說法中,錯誤的是:模型的可解釋性是指能夠理解模型的決策過程和預測結果的能力??山忉屝詫τ谝恍╆P鍵領域如醫(yī)療、金融等非常重要。那么,下列關于模型可解釋性的說法錯誤的是()A.線性回歸模型具有較好的可解釋性,因為它的決策過程可以用公式表示B.決策樹模型也具有一定的可解釋性,因為可以通過樹形結構直觀地理解決策過程C.深度神經(jīng)網(wǎng)絡模型通常具有較低的可解釋性,因為其決策過程非常復雜D.模型的可解釋性和性能是相互矛盾的,提高可解釋性必然會降低性能11、在機器學習中,強化學習是一種通過與環(huán)境交互來學習最優(yōu)策略的方法。假設一個機器人要通過強化學習來學習如何在復雜的環(huán)境中行走。以下關于強化學習的描述,哪一項是不正確的?()A.強化學習中的智能體根據(jù)環(huán)境的反饋(獎勵或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強化學習算法,通過估計狀態(tài)-動作值來選擇最優(yōu)動作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計算策略的梯度來更新策略參數(shù)D.強化學習不需要對環(huán)境進行建模,只需要不斷嘗試不同的動作就能找到最優(yōu)策略12、在構建一個機器學習模型時,我們通常需要對數(shù)據(jù)進行預處理。假設我們有一個包含大量缺失值的數(shù)據(jù)集,以下哪種處理缺失值的方法是較為合理的()A.直接刪除包含缺失值的樣本B.用平均值填充缺失值C.用隨機值填充缺失值D.不處理缺失值,直接使用原始數(shù)據(jù)13、在進行機器學習模型的訓練時,過擬合是一個常見的問題。假設我們正在訓練一個決策樹模型來預測客戶是否會購買某種產(chǎn)品,給定了客戶的個人信息和購買歷史等數(shù)據(jù)。以下關于過擬合的描述和解決方法,哪一項是錯誤的?()A.過擬合表現(xiàn)為模型在訓練集上表現(xiàn)很好,但在測試集上表現(xiàn)不佳B.增加訓練數(shù)據(jù)的數(shù)量可以有效地減少過擬合的發(fā)生C.對決策樹進行剪枝操作,即刪除一些不重要的分支,可以防止過擬合D.降低模型的復雜度,例如減少決策樹的深度,會導致模型的擬合能力下降,無法解決過擬合問題14、假設我們要使用機器學習算法來預測股票價格的走勢。以下哪種數(shù)據(jù)特征可能對預測結果幫助較小()A.公司的財務報表數(shù)據(jù)B.社交媒體上關于該股票的討論熱度C.股票代碼D.宏觀經(jīng)濟指標15、在機器學習中,降維是一種常見的操作,用于減少特征的數(shù)量。以下哪種降維方法是基于線性變換的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-SNED.以上都是二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋如何在機器學習中處理動態(tài)圖數(shù)據(jù)。2、(本題5分)談談如何使用機器學習進行泥石流監(jiān)測。3、(本題5分)機器學習在法學中的應用場景是什么?4、(本題5分)說明機器學習在急診醫(yī)學中的快速診斷。三、論述題(本大題共5個小題,共25分)1、(本題5分)詳細闡述決策樹算法的構建過程、分裂準則(如信息增益、基尼指數(shù))的選擇依據(jù)。討論決策樹容易出現(xiàn)過擬合的原因,以及常見的剪枝策略和效果。2、(本題5分)論述機器學習在航空流量管理中的應用。分析數(shù)據(jù)收集和處理方法,以及模型的準確性和實時性要求。3、(本題5分)探討機器學習在圖書館智能檢索中的應用,分析其對讀者信息獲取的便利。4、(本題5分)闡述機器學習中的模型壓縮方法。分析模型壓縮的原理和優(yōu)勢,以及在資源受限環(huán)境下的應用場景。5、(本題5分)探討機器學習在海洋生態(tài)系統(tǒng)監(jiān)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論