




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、1,Multiple Regression Analysis,y = b0 + b1x1 + b2x2 + . . . bkxk + u 1. Estimation,2,Parallels with Simple Regression,b0 is still the intercept b1 to bk all called slope parameters u is still the error term (or disturbance) Still need to make a zero conditional mean assumption, so now assume that E(
2、u|x1,x2, ,xk) = 0 Still minimizing the sum of squared residuals, so have k+1 first order conditions,3,Interpreting Multiple Regression,4,A “Partialling Out” Interpretation,5,“Partialling Out” continued,Previous equation implies that regressing y on x1 and x2 gives same effect of x1 as regressing y o
3、n residuals from a regression of x1 on x2 This means only the part of xi1 that is uncorrelated with xi2 are being related to yi so were estimating the effect of x1 on y after x2 has been “partialled out”,6,Simple vs Multiple Reg Estimate,7,Goodness-of-Fit,8,Goodness-of-Fit (continued),How do we thin
4、k about how well our sample regression line fits our sample data? Can compute the fraction of the total sum of squares (SST) that is explained by the model, call this the R-squared of regression R2 = SSE/SST = 1 SSR/SST,9,Goodness-of-Fit (continued),10,More about R-squared,R2 can never decrease when
5、 another independent variable is added to a regression, and usually will increase Because R2 will usually increase with the number of independent variables, it is not a good way to compare models,11,Assumptions for Unbiasedness,Population model is linear in parameters: y = b0 + b1x1 + b2x2 + bkxk +
6、u We can use a random sample of size n, (xi1, xi2, xik, yi): i=1, 2, , n, from the population model, so that the sample model is yi = b0 + b1xi1 + b2xi2 + bkxik + ui E(u|x1, x2, xk) = 0, implying that all of the explanatory variables are exogenous None of the xs is constant, and there are no exact l
7、inear relationships among them,12,Too Many or Too Few Variables,What happens if we include variables in our specification that dont belong? There is no effect on our parameter estimate, and OLS remains unbiased What if we exclude a variable from our specification that does belong? OLS will usually b
8、e biased,13,Omitted Variable Bias,14,Omitted Variable Bias (cont),15,Omitted Variable Bias (cont),16,Omitted Variable Bias (cont),17,Summary of Direction of Bias,18,Omitted Variable Bias Summary,Two cases where bias is equal to zero b2 = 0, that is x2 doesnt really belong in model x1 and x2 are unco
9、rrelated in the sample If correlation between x2 , x1 and x2 , y is the same direction, bias will be positive If correlation between x2 , x1 and x2 , y is the opposite direction, bias will be negative,19,The More General Case,Technically, can only sign the bias for the more general case if all of th
10、e included xs are uncorrelated Typically, then, we work through the bias assuming the xs are uncorrelated, as a useful guide even if this assumption is not strictly true,20,Variance of the OLS Estimators,Now we know that the sampling distribution of our estimate is centered around the true parameter
11、 Want to think about how spread out this distribution is Much easier to think about this variance under an additional assumption, so Assume Var(u|x1, x2, xk) = s2 (Homoskedasticity),21,Variance of OLS (cont),Let x stand for (x1, x2,xk) Assuming that Var(u|x) = s2 also implies that Var(y| x) = s2 The
12、 4 assumptions for unbiasedness, plus this homoskedasticity assumption are known as the Gauss-Markov assumptions,22,Variance of OLS (cont),23,Components of OLS Variances,The error variance: a larger s2 implies a larger variance for the OLS estimators The total sample variation: a larger SSTj implies
13、 a smaller variance for the estimators Linear relationships among the independent variables: a larger Rj2 implies a larger variance for the estimators,24,Misspecified Models,25,Misspecified Models (cont),While the variance of the estimator is smaller for the misspecified model, unless b2 = 0 the mis
14、specified model is biased As the sample size grows, the variance of each estimator shrinks to zero, making the variance difference less important,26,Estimating the Error Variance,We dont know what the error variance, s2, is, because we dont observe the errors, ui What we observe are the residuals, i We can use the residuals to form an estimate of the error variance,27,Error Variance Estimate (cont),df = n (k + 1), or df = n k 1 df (i.e. degrees of freedom) is the
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 停放車輛服務(wù)合同范本
- 加盟投資協(xié)議合同范本
- 住房購房合同范例
- 勞務(wù)家政合同范本
- 儀器安裝服務(wù)合同范本
- 修路挖機合同范本
- 臨時增項合同范本
- 北京公司擔保合同范本
- 做樓房施工合同范本
- 勞務(wù)合同范本買賣
- AI創(chuàng)作指令合集系列之-教案寫作指令
- 關(guān)于投資協(xié)議書范本5篇
- 《反電信網(wǎng)絡(luò)詐騙法》知識考試題庫150題(含答案)
- 2025年上海市各區(qū)初三一模語文試卷(打包16套無答案)
- 2024 原發(fā)性肝癌診療指南 更新要點課件
- 《圓柱與圓錐-圓柱的表面積》(說課稿)-2023-2024學年六年級下冊數(shù)學人教版
- 【8語期末】蕪湖市2024-2025學年八年級上學期期末考試語文試題
- 常用臨床檢驗結(jié)果解讀
- 2025年浙江省金華義烏市人社局招聘雇員歷年高頻重點提升(共500題)附帶答案詳解
- 老年癡呆患者護理課件
- 鐵路安全警示教育課件
評論
0/150
提交評論