八年級(jí)數(shù)學(xué)下冊(cè) 17.2 勾股定理的逆定理教案 (新版)新人教版_第1頁(yè)
八年級(jí)數(shù)學(xué)下冊(cè) 17.2 勾股定理的逆定理教案 (新版)新人教版_第2頁(yè)
八年級(jí)數(shù)學(xué)下冊(cè) 17.2 勾股定理的逆定理教案 (新版)新人教版_第3頁(yè)
八年級(jí)數(shù)學(xué)下冊(cè) 17.2 勾股定理的逆定理教案 (新版)新人教版_第4頁(yè)
八年級(jí)數(shù)學(xué)下冊(cè) 17.2 勾股定理的逆定理教案 (新版)新人教版_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、172 勾股定理的逆定理一、教學(xué)目的1體會(huì)勾股定理的逆定理得出過(guò)程,掌握勾股定理的逆定理。2探究勾股定理的逆定理的證明方法。3理解原命題、逆命題、逆定理的概念及關(guān)系。二、重點(diǎn)、難點(diǎn)1重點(diǎn):掌握勾股定理的逆定理及證明。2難點(diǎn):勾股定理的逆定理的證明。三、例題的意圖分析例1(補(bǔ)充)使學(xué)生了解命題,逆命題,逆定理的概念,及它們之間的關(guān)系。例2通過(guò)讓學(xué)生動(dòng)手操作,畫(huà)好圖形后剪下放到一起觀察能否重合,激發(fā)學(xué)生的興趣和求知欲,鍛煉學(xué)生的動(dòng)手操作能力,再通過(guò)探究理論證明方法,使實(shí)踐上升到理論,提高學(xué)生的理性思維。例3(補(bǔ)充)使學(xué)生明確運(yùn)用勾股定理的逆定理判定一個(gè)三角形是否是直角三角形的一般步驟:先判斷那條邊

2、最大。分別用代數(shù)方法計(jì)算出a2+b2和c2的值。判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則不是直角三角形。四、課堂引入創(chuàng)設(shè)情境:怎樣判定一個(gè)三角形是等腰三角形?怎樣判定一個(gè)三角形是直角三角形?和等腰三角形的判定進(jìn)行對(duì)比,從勾股定理的逆命題進(jìn)行猜想。五、例習(xí)題分析例1(補(bǔ)充)說(shuō)出下列命題的逆命題,這些命題的逆命題成立嗎?同旁?xún)?nèi)角互補(bǔ),兩條直線平行。如果兩個(gè)實(shí)數(shù)的平方相等,那么兩個(gè)實(shí)數(shù)平方相等。線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等。直角三角形中30角所對(duì)的直角邊等于斜邊的一半。分析:每個(gè)命題都有逆命題,說(shuō)逆命題時(shí)注意將題設(shè)和結(jié)論調(diào)換即可,但要分清題設(shè)和結(jié)論,并注意語(yǔ)言

3、的運(yùn)用。理順?biāo)麄冎g的關(guān)系,原命題有真有假,逆命題也有真有假,可能都真,也可能一真一假,還可能都假。解略。例2證明:如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形。分析:注意命題證明的格式,首先要根據(jù)題意畫(huà)出圖形,然后寫(xiě)已知求證。如何判斷一個(gè)三角形是直角三角形,現(xiàn)在只知道若有一個(gè)角是直角的三角形是直角三角形,從而將問(wèn)題轉(zhuǎn)化為如何判斷一個(gè)角是直角。利用已知條件作一個(gè)直角三角形,再證明和原三角形全等,使問(wèn)題得以解決。先做直角,再截取兩直角邊相等,利用勾股定理計(jì)算斜邊A1B1=c,則通過(guò)三邊對(duì)應(yīng)相等的兩個(gè)三角形全等可證。先讓學(xué)生動(dòng)手操作,畫(huà)好圖形后剪下放到一起觀察能否重

4、合,激發(fā)學(xué)生的興趣和求知欲,再探究理論證明方法。充分利用這道題鍛煉學(xué)生的動(dòng)手操作能力,由實(shí)踐到理論學(xué)生更容易接受。證明略。例3(補(bǔ)充)已知:在ABC中,A、B、C的對(duì)邊分別是a、b、c,a=n21,b=2n,c=n21(n1)求證:C=90。分析:運(yùn)用勾股定理的逆定理判定一個(gè)三角形是否是直角三角形的一般步驟:先判斷那條邊最大。分別用代數(shù)方法計(jì)算出a2+b2和c2的值。判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則不是直角三角形。要證C=90,只要證ABC是直角三角形,并且c邊最大。根據(jù)勾股定理的逆定理只要證明a2+b2=c2即可。由于a2+b2= (n21)2(2n)2=n

5、42n21,c2=(n21)2= n42n21,從而a2+b2=c2,故命題獲證。六、課堂練習(xí)1判斷題。在一個(gè)三角形中,如果一邊上的中線等于這條邊的一半,那么這條邊所對(duì)的角是直角。命題:“在一個(gè)三角形中,有一個(gè)角是30,那么它所對(duì)的邊是另一邊的一半?!钡哪婷}是真命題。勾股定理的逆定理是:如果兩條直角邊的平方和等于斜邊的平方,那么這個(gè)三角形是直角三角形。ABC的三邊之比是1:1:,則ABC是直角三角形。2ABC中A、B、C的對(duì)邊分別是a、b、c,下列命題中的假命題是( )A如果CB=A,則ABC是直角三角形。B如果c2= b2a2,則ABC是直角三角形,且C=90。C如果(ca)(ca)=b2

6、,則ABC是直角三角形。D如果A:B:C=5:2:3,則ABC是直角三角形。3下列四條線段不能組成直角三角形的是( )Aa=8,b=15,c=17Ba=9,b=12,c=15Ca=,b=,c=Da:b:c=2:3:44已知:在ABC中,A、B、C的對(duì)邊分別是a、b、c,分別為下列長(zhǎng)度,判斷該三角形是否是直角三角形?并指出那一個(gè)角是直角? a=,b=,c=; a=5,b=7,c=9;a=2,b=,c=; a=5,b=,c=1。七、課后練習(xí),1敘述下列命題的逆命題,并判斷逆命題是否正確。如果a30,那么a20;如果三角形有一個(gè)角小于90,那么這個(gè)三角形是銳角三角形;如果兩個(gè)三角形全等,那么它們的對(duì)

7、應(yīng)角相等;關(guān)于某條直線對(duì)稱(chēng)的兩條線段一定相等。2填空題。任何一個(gè)命題都有 ,但任何一個(gè)定理未必都有 。“兩直線平行,內(nèi)錯(cuò)角相等。”的逆定理是 。在ABC中,若a2=b2c2,則ABC是 三角形, 是直角;若a2b2c2,則B是 。若在ABC中,a=m2n2,b=2mn,c= m2n2,則ABC是 三角形。3若三角形的三邊是 1、2; ; 32,42,52 9,40,41; (mn)21,2(mn),(mn)21;則構(gòu)成的是直角三角形的有( )A2個(gè) B個(gè)個(gè)個(gè)4已知:在ABC中,A、B、C的對(duì)邊分別是a、b、c,分別為下列長(zhǎng)度,判斷該三角形是否是直角三角形?并指出那一個(gè)角是直角?a=9,b=41

8、,c=40; a=15,b=16,c=6;a=2,b=,c=4; a=5k,b=12k,c=13k(k0)。八、參考答案:課堂練習(xí):1對(duì),錯(cuò),錯(cuò),對(duì); 2D;3D; 4是,B;不是;是,C;是,A。課后練習(xí):1如果a20,那么a30;假命題。如果三角形是銳角三角形,那么有一個(gè)角是銳角;真命題。如果兩個(gè)三角形的對(duì)應(yīng)角相等,那么這兩個(gè)三角形全等;假命題。兩條相等的線段一定關(guān)于某條直線對(duì)稱(chēng);假命題。2逆命題,逆定理;內(nèi)錯(cuò)角相等,兩直線平行;直角,B,鈍角;直角。 3B 4是,B;不是,;是,C;是,C。課后反思:172 勾股定理的逆定理(二)教案總序號(hào):14 時(shí)間:一、教學(xué)目的1靈活應(yīng)用勾股定理及逆

9、定理解決實(shí)際問(wèn)題。2進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí)。二、重點(diǎn)、難點(diǎn)1重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題。2難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題。三、例題的意圖分析例1(見(jiàn)教材例題)讓學(xué)生養(yǎng)成利用勾股定理的逆定理解決實(shí)際問(wèn)題的意識(shí)。例2(補(bǔ)充)培養(yǎng)學(xué)生利用方程思想解決問(wèn)題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問(wèn)題的意識(shí)。四、課堂引入創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法。五、例習(xí)題分析例1(見(jiàn)教材)分析:了解方位角,及方位名詞;依題意畫(huà)出圖形;依題意可得PR=121.5=18,PQ=161.5=24, QR=30;因?yàn)?42+18

10、2=302,PQ2+PR2=QR2,根據(jù)勾股定理 的逆定理,知QPR=90;PRS=QPR-QPS=45。小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識(shí)。例2(補(bǔ)充)一根30米長(zhǎng)的細(xì)繩折成3段,圍成一個(gè)三角形,其中一條邊的長(zhǎng)度比較短邊長(zhǎng)7米,比較長(zhǎng)邊短1米,請(qǐng)你試判斷這個(gè)三角形的形狀。分析:若判斷三角形的形狀,先求三角形的三邊長(zhǎng);設(shè)未知數(shù)列方程,求出三角形的三邊長(zhǎng)5、12、13;根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形。解略。六、課堂練習(xí)1小強(qiáng)在操場(chǎng)上向東走80m后,又走了60m,再走100m回到原地。小強(qiáng)在操場(chǎng)上向東走了80m后,又走60m的方向是 。

11、2如圖,在操場(chǎng)上豎直立著一根長(zhǎng)為2米的測(cè)影竿,早晨測(cè)得它的影長(zhǎng)為4米,中午測(cè)得它的影長(zhǎng)為1米,則A、B、C三點(diǎn)能否構(gòu)成直角三角形?為什么?3如圖,在我國(guó)沿海有一艘不明國(guó)籍的輪船進(jìn)入我國(guó)海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個(gè)基地前去攔截,六分鐘后同時(shí)到達(dá)C地將其攔截。已知甲巡邏艇每小時(shí)航行120海里,乙巡邏艇每小時(shí)航行50海里,航向?yàn)楸逼?0,問(wèn):甲巡邏艇的航向?七、課后練習(xí)1一根24米繩子,折成三邊為三個(gè)連續(xù)偶數(shù)的三角形,則三邊長(zhǎng)分別為 ,此三角形的形狀為 。2一根12米的電線桿AB,用鐵絲AC、AD固定,現(xiàn)已知用去鐵絲AC=15米,AD=13米,又測(cè)得地面上B、C兩點(diǎn)之

12、間距離是9米,B、D兩點(diǎn)之間距離是5米,則電線桿和地面是否垂直,為什么?3如圖,小明的爸爸在魚(yú)池邊開(kāi)了一塊四邊形土地種了一些蔬菜,爸爸讓小明計(jì)算一下土地的面積,以便計(jì)算一下產(chǎn)量。小明找了一卷米尺,測(cè)得AB=4米,BC=3米,CD=13米,DA=12米,又已知B=90。八、參考答案:課堂練習(xí):1向正南或正北。2能,因?yàn)锽C2=BD2+CD2=20,AC2=AD2+CD2=5,AB2=25,所以BC2+AC2= AB2;3由ABC是直角三角形,可知CAB+CBA=90,所以有CAB=40,航向?yàn)楸逼珫|50。 課后練習(xí):16米,8米,10米,直角三角形;2ABC、ABD是直角三角形,AB和地面垂直。

13、3提示:連結(jié)AC。AC2=AB2+BC2=25,AC2+AD2=CD2,因此CAB=90,S四邊形=SADC+SABC=36平方米。課后反思:172 勾股定理的逆定理(三)教案總序號(hào):15 時(shí)間:一、教學(xué)目的1應(yīng)用勾股定理的逆定理判斷一個(gè)三角形是否是直角三角形。 2靈活應(yīng)用勾股定理及逆定理解綜合題。3進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí)。二、重點(diǎn)、難點(diǎn)1重點(diǎn):利用勾股定理及逆定理解綜合題。2難點(diǎn):利用勾股定理及逆定理解綜合題。三、例題的意圖分析例1(補(bǔ)充)利用因式分解和勾股定理的逆定理判斷三角形的形狀。例2(補(bǔ)充)使學(xué)生掌握研究四邊形的問(wèn)題,通常添置輔助線把它轉(zhuǎn)化為研究三角形的問(wèn)題。本題

14、輔助線作平行線間距離無(wú)法求解。創(chuàng)造3、4、5勾股數(shù),利用勾股定理的逆定理證明DE就是平行線間距離。例3(補(bǔ)充)勾股定理及逆定理的綜合應(yīng)用,注意條件的轉(zhuǎn)化及變形。四、課堂引入勾股定理和它的逆定理是黃金搭檔,經(jīng)常綜合應(yīng)用來(lái)解決一些難度較大的題目。五、例習(xí)題分析例1(補(bǔ)充)已知:在ABC中,A、B、C的對(duì)邊分別是a、b、c,滿足a2+b2+c2+338=10a+24b+26c。試判斷ABC的形狀。分析:移項(xiàng),配成三個(gè)完全平方;三個(gè)非負(fù)數(shù)的和為0,則都為0;已知a、b、c,利用勾股定理的逆定理判斷三角形的形狀為直角三角形。例2(補(bǔ)充)已知:如圖,四邊形ABCD,ADBC,AB=4,BC=6,CD=5,

15、AD=3。求:四邊形ABCD的面積。分析:作DEAB,連結(jié)BD,則可以證明ABDEDB(ASA);DE=AB=4,BE=AD=3,EC=EB=3;在DEC中,3、4、5勾股數(shù),DEC為直角三角形,DEBC;利用梯形面積公式可解,或利用三角形的面積。例3(補(bǔ)充)已知:如圖,在ABC中,CD是AB邊上的高,且CD2=ADBD。求證:ABC是直角三角形。 分析:AC2=AD2+CD2,BC2=CD2+BD2AC2+BC2=AD2+2CD2+BD2=AD2+2ADBD+BD2=(AD+BD)2=AB2六、課堂練習(xí)1若ABC的三邊a、b、c,滿足(ab)(a2b2c2)=0,則ABC是( )A等腰三角形

16、;B直角三角形;C等腰三角形或直角三角形;D等腰直角三角形。2若ABC的三邊a、b、c,滿足a:b:c=1:1:,試判斷ABC的形狀。3已知:如圖,四邊形ABCD,AB=1,BC=,CD=,AD=3,且ABBC。求:四邊形ABCD的面積。4已知:在ABC中,ACB=90,CDAB于D,且CD2=ADBD。求證:ABC中是直角三角形。七、課后練習(xí),1若ABC的三邊a、b、c滿足a2+b2+c2+50=6a+8b+10c,求ABC的面積。2在ABC中,AB=13cm,AC=24cm,中線BD=5cm。求證:ABC是等腰三角形。3已知:如圖,1=2,AD=AE,D為BC上一點(diǎn),且BD=DC,AC2=AE2+CE2。求證:AB2=AE2+CE2。4已知ABC的三邊為a、b、c,且a+b=4,ab=1,c=,試判定ABC的形狀。 八、參考答案:課堂練習(xí):1C;2ABC是等腰直角三角形; 3 4提示:AC2=AD2+CD2,BC2=CD2+BD2,AC2+BC2=AD2+2CD2+BD2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論