版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、三角函數(shù)公式兩角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =,tan(A-B) =,cot(A+B) =,cot(A-B) =倍角公式tan2A =,Sin2A=2SinACosA,Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3, cos3A = 4(cosA)3-3cosA, tan3a = tana
2、tan(+a)tan(-a)半角公式sin()= , cos()=,tan()=,cot()= ,tan()=和差化積 sina+sinb=2sincossina-sinb=2cossincosa+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=積化和差 sinasinb = -cos(a+b)-cos(a-b)cosacosb = cos(a+b)+cos(a-b)sinacosb = sin(a+b)+sin(a-b)cosasinb = sin(a+b)-sin(a-b)誘導(dǎo)公式 sin(-a) = -sinacos(-a) = cosasin(-
3、a) = cosacos(-a) = sinasin(+a) = cosacos(+a) = -sinasin(-a) = sinacos(-a) = -cosasin(+a) = -sinacos(+a) = -cosatgA=tanA =萬能公式sina=cosa=tana=其它公式asina+bcosa=sin(a+c) 其中tanc=asin(a)-bcos(a) = cos(a-c) 其中tan(c)=1+sin(a) =(sin+cos)21-sin(a) = (sin-cos)2其他非重點三角函數(shù)csc(a) = , sec(a) =雙曲函數(shù)sinh(a)=,cosh(a)=,t
4、g h(a)=公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2k)= sin cos(2k)= cos tan(2k)= tan cot(2k)= cot 公式二: 設(shè)為任意角,+的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系: sin()= -sin cos()= -cos tan()= tan cot()= cot 公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系: sin(-)= -sin cos(-)= cos tan(-)= -tan cot(-)= -cot 公式四: 利用公式二和公式三可以得到-與的三角函數(shù)值之間的關(guān)系: sin(-)= sin cos(-)= -cos
5、tan(-)= -tan cot(-)= -cot 公式五: 利用公式-和公式三可以得到2-與的三角函數(shù)值之間的關(guān)系: sin(2-)= -sin cos(2-)= cos tan(2-)= -tan cot(2-)= -cot 公式六: 及與的三角函數(shù)值之間的關(guān)系: sin(+)= cos cos(+)= -sin tan(+)= -cot cot(+)= -tan sin(-)= cos cos(-)= sin tan(-)= cot cot(-)= tan sin(+)= -cos cos(+)= sin tan(+)= -cot cot(+)= -tan sin(-)= -cos co
6、s(-)= -sin tan(-)= cot cot(-)= tan (以上kZ) 這個物理常用公式我費了半天的勁才輸進來,希望對大家有用 Asin(t+)+ Bsin(t+) =sin三角函數(shù)公式證明(全部)公式表達式 乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-b+(b2-4ac)/2a 根與系數(shù)的關(guān)系 X1+X2=-b/a
7、X1*X2=c/a 注:韋達定理 判別式 b2-4a=0 注:方程有相等的兩實根 b2-4ac0 注:方程有一個實根 b2-4ac0 拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c*h 正棱錐側(cè)面積 S=1/2c*h 正棱臺側(cè)面積 S=1/2(c+c)h 圓臺側(cè)面積 S=1/2(c+c)l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l 弧長公式 l=a*r a是圓心角的弧度數(shù)r 0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1
8、/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜棱柱體積 V=SL 注:其中,S是直截面面積, L是側(cè)棱長 柱體體積公式 V=s*h 圓柱體 V=pi*r2h-三角函數(shù) 積化和差 和差化積公式記不住就自己推,用兩角和差的正余弦: cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB 這兩式相加或相減,可以得到2組積化和差: 相加:cosAcosB=cos(A+B)+cos(A-B)/2 相減:sinAsinB=-cos(A+B)-cos(A-B)/2 sin(A+B)=sinAcosB+sinBcosA sin(A-B)=sinA
9、cosB-sinBcosA 這兩式相加或相減,可以得到2組積化和差: 相加:sinAcosB=sin(A+B)+sin(A-B)/2 相減:sinBcosA=sin(A+B)-sin(A-B)/2 這樣一共4組積化和差,然后倒過來就是和差化積了 不知道這樣你可以記住伐,實在記不住考試的時候也可以臨時推導(dǎo)一下正加正 正在前 正減正 余在前 余加余 都是余 余減余 沒有余還負 正余正加 余正正減 余余余加 正正余減還負.3.三角形中的一些結(jié)論:(不要求記憶)(1)anA+tanB+tanC=tanAtanBtanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)sin(B/2)sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinAsinBsinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1已知sin=m sin(+2), |m|1,求證tan(+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 非接觸性標測系統(tǒng)引導(dǎo)下的房顫射頻消融術(shù)
- 2025年苯噻草胺合作協(xié)議書
- 全日制研究生定向培養(yǎng)協(xié)議書(2篇)
- 管理體系工作參考計劃范文5篇
- 攤位租賃市場租賃協(xié)議
- 旅游接待用車租賃合同
- 財產(chǎn)租賃合同樣書
- 2025年機械自動采樣設(shè)備項目發(fā)展計劃
- 八年級語文上冊第五單元寫作說明事物要抓住特征教案新人教版1
- 2024年玉米種植、收購、加工一體化服務(wù)合同3篇
- 2022年同等學(xué)力申碩英語學(xué)科模擬試題(4套全部有解析)
- 2023事業(yè)單位資料分析考試內(nèi)容:資料分析考試練習(xí)題
- ktv營運總監(jiān)崗位職責(zé)
- 三級配電箱巡檢記錄
- 《全國統(tǒng)一安裝工程預(yù)算定額》工程量計算規(guī)則
- GA/T 798-2008排油煙氣防火止回閥
- GA/T 1163-2014人類DNA熒光標記STR分型結(jié)果的分析及應(yīng)用
- 《中國紅》詩歌朗誦
- 光伏工程啟動驗收鑒定書
- 承攬合同糾紛答辯狀范例2篇
- 招聘與錄用選擇題
評論
0/150
提交評論