推薦系統(tǒng)設(shè)計.ppt_第1頁
推薦系統(tǒng)設(shè)計.ppt_第2頁
推薦系統(tǒng)設(shè)計.ppt_第3頁
推薦系統(tǒng)設(shè)計.ppt_第4頁
推薦系統(tǒng)設(shè)計.ppt_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、Design Strategies for Recommender Systems,Rashmi Sinha Jan 2006, UIE Web App Summit,UIE Web App Summit,2,What are Recommender Systems?,Circa 2001 Systems that attempt to predict items, e.g., movies, music, books, that a user may be interested in (given some information about the users profile) e.g.,

2、 Amazon people who liked this book also liked, Netflix recommendations Circa 2006 Systems that help people find information that will interest them, by facilitating social / conceptual connections or other means Pandora, Last.fm,UIE Web App Summit,3,Designing different finding experiences,Some exper

3、iences guide user, others just point in a general direction Desired experience depends on user task, time constraints, mood etc.,Theres more than one way to get from here to there,UIE Web App Summit,4,User experience in search/browse interfaces,More controlled experience Every movement (forward, mak

4、ing a turn) is a conscious choice System should provide information at every step If user takes wrong turn, go back a step or two / start again,Like driving a car,UIE Web App Summit,5,User Experience with Recommender Systems,User has less control over specifics of interaction System does not provide

5、 information about specifics of action More of a “black box” model (some input from user, output from systems),Like riding a roller coaster,Recommender Systems Circa 2001,UIE Web App Summit,7,what movies you should watch (Reel, RatingZone, Amazon) what music you should listen to (CDNow, Mubu, Gigabe

6、at) what websites you should visit (Alexa) what jokes you will like (Jester) where to go on vacation (TripleHop) sense that others are out there User profiles and photos put a human face on the system interactions,Spotback,UIE Web App Summit,37,What people are doing on Digg,UIE Web App Summit,38,Des

7、ign Principle 4: Instant gratification,Provide personalized recommendations as soon as a user provides some input Pandora: one song instant radio station Spotback: one article rating instant articles of interest Note: need lots of user data for this to work well (cold start problem emerges again?),U

8、IE Web App Summit,39,Design Principle 5: Cultivate user independence,Prevent mobs, optimize the “wisdom of crowds”,UIE Web App Summit,40,Cultivating wise crowds,Four conditions Cognitive Diversity Independence Decentralization Easy Aggregation,UIE Web App Summit,41,Design Principle 6: Provide access

9、 to long tail, keep content fast moving,Make “l(fā)ong tail” accessible Recommend lots of different stuff (not just most popular) Top 100 lists Keeps recs from getting stale Use time as a dimension in system design Enable fast movement. Rise to top. Get displaced. e.g., “whats fresh today” e.g., Slidesh

10、are popularity model,UIE Web App Summit,42,Design Principle 7: Expose metadata, make it linkable,Exposing tags and user lists Enable “pivot browsing” Every piece of content should have a unique, easily guessed URL.,UIE Web App Summit,43,Design Principle 8: Provide balance between public methods for adjusting this setting,UIE Web App Summit,46,Things to try at home!,Create an account on Read Emergence, Wisdom of Crowds Play a Multiplayer Online Game (WOW, Second Life) Pla

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論