a general decomposition for reversible logic m perkowsk:可逆邏輯m perkowsk一般分解_第1頁(yè)
a general decomposition for reversible logic m perkowsk:可逆邏輯m perkowsk一般分解_第2頁(yè)
a general decomposition for reversible logic m perkowsk:可逆邏輯m perkowsk一般分解_第3頁(yè)
a general decomposition for reversible logic m perkowsk:可逆邏輯m perkowsk一般分解_第4頁(yè)
a general decomposition for reversible logic m perkowsk:可逆邏輯m perkowsk一般分解_第5頁(yè)
已閱讀5頁(yè),還剩51頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

A General Decomposition for Reversible LogicM. Perkowski, L. Jozwiak#, P. Kerntopf+, A. Mishchenko, A. Al-Rabadi, A. Coppola, A. Buller*, X. Song, M. Md. Mozammel Huq Azad Khan thus the vector of input states can be always reconstructed from the vector of output states. 000 000001 001010 010011 011100 100101 101 110 110111 111INPUTS OUTPUTS2 43 64 25 36 5(2,4)(365)Reversible logicReversible are circuits (gates) that have the same number of inputs and outputs and have one-to-one mapping between vectors of inputs and outputs; thus the vector of input states can be always reconstructed from the vector of output states. 000 000001 001010 010011 011100 100101 101 110 110111 111INPUTS OUTPUTSFeedback not allowedFan-out not allowed2 43 64 25 36 5(2,4)(365)Reversible logic constraintsFeedback not allowed in combinational partFan-out not allowedIn some papers allowed under certain conditionsIn some papers allowed in a limited way in a “near reversible” circuitTo understand reversible logic, it is useful to have intuitive feeling of various models of its realization.Conservative Reversible GatesDefinitions A gate with k inputs and k outputs is called a k*k gate. A conservative circuit preserves the number of logic values in all combinations. In balanced binary logic the circuit has half of minterms with value 1.Billiard Ball Model DEFLECTIONSHIFTDELAY This is described in E. Fredkin and T. Toffoli, “Conservative Logic”, Int. J.Theor. Phys. 21,219 (1982).Billiard Ball Model (BBM)Input outputA B 1 2 3 40 0 0 0 0 00 1 0 1 0 01 0 0 0 1 01 1 1 0 0 1A and BAB A and B B and NOT AA and NOT BThis is called interaction gateThis illustrates principle of conservation (of the number of balls, or energy) in conservative logic. Interaction gateInput outputA B z1 z2 z3 z40 0 0 0 0 00 1 0 1 0 01 0 0 0 1 01 1 1 0 0 1Z1= A and BABZ4 = A and B Z2 = B and NOT AZ3 = A and NOT BABZ1= A and BZ2 = B and NOT AZ3 = A and NOT BZ4 = A and B Inverse Interaction gateoutputinputA Bz1 z2 z3 z40 0 0 0 0 00 1 0 0 0 10 0 1 0 1 01 0 0 1 1 1Z1= A and BABZ4 = A and B Z2 = B and NOT AZ3 = A and NOT BOther input combinations not allowedz1z3z2z4ABDesigning with this types of gates is difficultBilliard Ball Model (BBM)Input outputA B z1 z2 z3 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 1AB23Z1 = NOT A * BZ2 = A * BZ3 = A switchPriese Switch GateInput outputA B z1 z2 z3 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 1AB23Z1 = NOT A * BZ2 = A * BZ3 = A ABInverse Priese Switch GateoutputinputA B z1 z2 z3 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 z1ABz2z3Z3 Z1 ABZ2 Inverter and Copier Gates from Priese GateZ1 = NOT A * 1garbagegarbage A1garbageV2 = B * 1V3 = B B1 Garbage outputs shown in greenInverter realized with two garbagesCopier realized with one garbageInput constants The 2*2 Feynman gate, called also controled-not or quantum XOR realizes functions P = A, Q = A B, where operator denotes EXOR When A = 0 then Q = B, when A = 1 then Q = B. Every linear reversible function can be built by composing only 2*2 Feynman gates and inverters With B=0 Feynman gate is used as a fan-out gate. (Copying gate)Feynman Gate+A BP QFeynman Gate from PrieseZ1 = NOT A * BZ2 = A * BZ3 = A ABV1 = NOT B * AV2 = B * AV3 = B BABABFan-out 1Garbage outputs Z2 and V2 shown in greenFredkin GateFredkin Gate is a fundamental concept in reversible and quantum computing. Every Boolean function can be build from 3 * 3 Fredkin gates: P = A, Q = if A then C else B, R = if A then B else C. Notation for Fredkin GatesA 0 1 0 1C B PQ RA 0 1PB C Q R A circuit from two multiplexersIts schemataThis is a reversible gate, one of manyC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論