




已閱讀5頁(yè),還剩51頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
A General Decomposition for Reversible LogicM. Perkowski, L. Jozwiak#, P. Kerntopf+, A. Mishchenko, A. Al-Rabadi, A. Coppola, A. Buller*, X. Song, M. Md. Mozammel Huq Azad Khan thus the vector of input states can be always reconstructed from the vector of output states. 000 000001 001010 010011 011100 100101 101 110 110111 111INPUTS OUTPUTS2 43 64 25 36 5(2,4)(365)Reversible logicReversible are circuits (gates) that have the same number of inputs and outputs and have one-to-one mapping between vectors of inputs and outputs; thus the vector of input states can be always reconstructed from the vector of output states. 000 000001 001010 010011 011100 100101 101 110 110111 111INPUTS OUTPUTSFeedback not allowedFan-out not allowed2 43 64 25 36 5(2,4)(365)Reversible logic constraintsFeedback not allowed in combinational partFan-out not allowedIn some papers allowed under certain conditionsIn some papers allowed in a limited way in a “near reversible” circuitTo understand reversible logic, it is useful to have intuitive feeling of various models of its realization.Conservative Reversible GatesDefinitions A gate with k inputs and k outputs is called a k*k gate. A conservative circuit preserves the number of logic values in all combinations. In balanced binary logic the circuit has half of minterms with value 1.Billiard Ball Model DEFLECTIONSHIFTDELAY This is described in E. Fredkin and T. Toffoli, “Conservative Logic”, Int. J.Theor. Phys. 21,219 (1982).Billiard Ball Model (BBM)Input outputA B 1 2 3 40 0 0 0 0 00 1 0 1 0 01 0 0 0 1 01 1 1 0 0 1A and BAB A and B B and NOT AA and NOT BThis is called interaction gateThis illustrates principle of conservation (of the number of balls, or energy) in conservative logic. Interaction gateInput outputA B z1 z2 z3 z40 0 0 0 0 00 1 0 1 0 01 0 0 0 1 01 1 1 0 0 1Z1= A and BABZ4 = A and B Z2 = B and NOT AZ3 = A and NOT BABZ1= A and BZ2 = B and NOT AZ3 = A and NOT BZ4 = A and B Inverse Interaction gateoutputinputA Bz1 z2 z3 z40 0 0 0 0 00 1 0 0 0 10 0 1 0 1 01 0 0 1 1 1Z1= A and BABZ4 = A and B Z2 = B and NOT AZ3 = A and NOT BOther input combinations not allowedz1z3z2z4ABDesigning with this types of gates is difficultBilliard Ball Model (BBM)Input outputA B z1 z2 z3 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 1AB23Z1 = NOT A * BZ2 = A * BZ3 = A switchPriese Switch GateInput outputA B z1 z2 z3 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 1AB23Z1 = NOT A * BZ2 = A * BZ3 = A ABInverse Priese Switch GateoutputinputA B z1 z2 z3 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 z1ABz2z3Z3 Z1 ABZ2 Inverter and Copier Gates from Priese GateZ1 = NOT A * 1garbagegarbage A1garbageV2 = B * 1V3 = B B1 Garbage outputs shown in greenInverter realized with two garbagesCopier realized with one garbageInput constants The 2*2 Feynman gate, called also controled-not or quantum XOR realizes functions P = A, Q = A B, where operator denotes EXOR When A = 0 then Q = B, when A = 1 then Q = B. Every linear reversible function can be built by composing only 2*2 Feynman gates and inverters With B=0 Feynman gate is used as a fan-out gate. (Copying gate)Feynman Gate+A BP QFeynman Gate from PrieseZ1 = NOT A * BZ2 = A * BZ3 = A ABV1 = NOT B * AV2 = B * AV3 = B BABABFan-out 1Garbage outputs Z2 and V2 shown in greenFredkin GateFredkin Gate is a fundamental concept in reversible and quantum computing. Every Boolean function can be build from 3 * 3 Fredkin gates: P = A, Q = if A then C else B, R = if A then B else C. Notation for Fredkin GatesA 0 1 0 1C B PQ RA 0 1PB C Q R A circuit from two multiplexersIts schemataThis is a reversible gate, one of manyC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 化工廠施工危險(xiǎn)點(diǎn)識(shí)別及防范預(yù)控措施
- 一年級(jí)上冊(cè)書法課學(xué)生能力提升計(jì)劃
- 公務(wù)出差批準(zhǔn)回復(fù)函范文
- 以案說警酒店行業(yè)服務(wù)規(guī)范心得體會(huì)
- 人教版小學(xué)四年級(jí)數(shù)學(xué)下冊(cè)微課制作計(jì)劃
- 機(jī)場(chǎng)航站樓網(wǎng)架高空散裝安全防護(hù)措施
- 大班幼小銜接的勞動(dòng)習(xí)慣培養(yǎng)計(jì)劃
- 機(jī)械電子一體化專業(yè)畢業(yè)實(shí)習(xí)報(bào)告范文
- 成人本科自考自我鑒定范文
- 精密儀表成品保護(hù)措施
- 小學(xué)數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生數(shù)感
- 數(shù)學(xué) 2024-2025學(xué)年人教版(2024)七年級(jí)數(shù)學(xué)下冊(cè)期末考試測(cè)試卷
- 貴州省貴陽(yáng)市部分學(xué)校2024-2025學(xué)年高二下冊(cè)期末聯(lián)考數(shù)學(xué)試卷(附答案)
- 2025至2030中國(guó)二手車市場(chǎng)發(fā)展趨勢(shì)分析與未來投資戰(zhàn)略咨詢研究報(bào)告
- 《機(jī)床電氣與PLC控制技術(shù)》課件 2 S7-1200PLC數(shù)據(jù)的存儲(chǔ)及訪問
- 多模態(tài)人機(jī)交互優(yōu)化-洞察闡釋
- T/CAR 7-2021綠色高效自攜式商用冷藏陳列柜技術(shù)要求和評(píng)價(jià)方法
- 合作賬號(hào)合伙協(xié)議書
- 五年級(jí)數(shù)學(xué)下冊(cè)期末必考應(yīng)用題母題
- 山東省濟(jì)南市2025屆高三三模生物試卷(含答案)
評(píng)論
0/150
提交評(píng)論