外文翻譯--基于有限元法旋耕機(jī)傳動(dòng)齒輪應(yīng)力分析_第1頁(yè)
外文翻譯--基于有限元法旋耕機(jī)傳動(dòng)齒輪應(yīng)力分析_第2頁(yè)
外文翻譯--基于有限元法旋耕機(jī)傳動(dòng)齒輪應(yīng)力分析_第3頁(yè)
外文翻譯--基于有限元法旋耕機(jī)傳動(dòng)齒輪應(yīng)力分析_第4頁(yè)
外文翻譯--基于有限元法旋耕機(jī)傳動(dòng)齒輪應(yīng)力分析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于有限元法,旋耕機(jī)傳動(dòng)齒輪應(yīng)力分析 穆罕默德 托帕克 庫(kù)薩特 西里克 丹妮資 耶爾馬茲 易卜拉欣 阿辛琪 阿克登尼基大學(xué)農(nóng)學(xué)院,安塔利亞,土耳其 農(nóng)業(yè)機(jī)械部 2008年 8月 12日 摘要 旋耕機(jī)的耕作工具,獲取自己的運(yùn)動(dòng)由拖拉機(jī)動(dòng)力起飛( PTO)有被設(shè)計(jì)為混合土。降低土壤交通在很大程度上與此工具混合土。使用旋耕機(jī)是提高我國(guó)由于其許多優(yōu)點(diǎn)。旋耕機(jī)結(jié)構(gòu)具有一個(gè)齒輪箱,改變運(yùn)動(dòng)方向由拖拉機(jī)動(dòng)力輸出軸 90度,旋轉(zhuǎn)速度傳動(dòng)齒輪和轉(zhuǎn)子軸放置在水平的土壤混合。有刀片在進(jìn)入轉(zhuǎn)子軸件和混合土。特別是,在刀片和傳動(dòng) 齒輪,變形發(fā)生由于高無(wú)振動(dòng),高功率,土壤的部分影響,使用條件設(shè)計(jì)制造誤差和錯(cuò)誤。特別是用于建筑和傳動(dòng)部件的應(yīng)力分布,為理解好的確定失敗的原因。在這項(xiàng)研究中,傳動(dòng)的旋耕機(jī)而設(shè)計(jì)制造的一種本地制造商被建模為三維參數(shù)化設(shè)計(jì)軟件和結(jié)構(gòu)應(yīng)力在根據(jù)其工作使用有限元軟件模擬了在傳動(dòng)齒輪的分布條件。后仿真結(jié)果評(píng)價(jià),對(duì)齒輪應(yīng)力分布表明,齒輪工作無(wú)故障根據(jù)齒輪的材料應(yīng)力屈服。此外,計(jì)算的參考齒輪工作安全系數(shù)仿真結(jié)果。 關(guān)鍵詞: 旋耕機(jī),應(yīng)力分析,有限元法 1. 引言 旋耕機(jī)耕作機(jī), 適 用于農(nóng)田、果園 , 在農(nóng)業(yè)。旋耕機(jī)有削 減巨大的能力, 混合土和苗床準(zhǔn)備直接制備。此外,旋耕機(jī)有更多的混合能力是比犁的七倍。 旋耕機(jī)是連接到拖拉機(jī)三點(diǎn)聯(lián)動(dòng)系統(tǒng),它是由拖拉機(jī)動(dòng)力輸出軸驅(qū)動(dòng)( PTO)。運(yùn)動(dòng)的方向改變 90 度,從拖拉機(jī)動(dòng)力輸出第二齒輪箱的水平軸。轉(zhuǎn)子軸與第二齒輪箱的運(yùn)動(dòng)。 旋耕機(jī)的元素在 其他作用力下 由于高無(wú)振動(dòng),高功率,土壤的部分影響,設(shè)計(jì)制造錯(cuò)誤和錯(cuò)誤的使用條件,耕作。因此,不需要的應(yīng)力在它的元素分布。如果元素不能補(bǔ)償?shù)牟倏v力,這些元素變得毫無(wú)用處,因?yàn)榇蚱苹虼笞冃纹茐摹L貏e是葉片及傳動(dòng)元件必須耐用 于操縱力下 。應(yīng)力分布的預(yù)測(cè)是非常重要 的無(wú)故障產(chǎn)生的良好工作的設(shè)計(jì)和產(chǎn)品設(shè)計(jì)師和制造商。機(jī)的廠家,要為自己的機(jī)器,可能的錯(cuò)誤,防止使用的材料,具有很高的安全系數(shù),或者他們使用高質(zhì)量的機(jī)械元件。雖然這些措施可以安全,產(chǎn)品的重量和成本的上升。 幫助開發(fā)的技術(shù)和設(shè)計(jì)軟件,集成在新的代計(jì)算機(jī),設(shè)計(jì)變得更加方便和可靠的。設(shè)計(jì)師可以設(shè)計(jì)在虛擬屏幕上自己的產(chǎn)品和他們可以利用計(jì)算機(jī)仿真技術(shù),評(píng)價(jià)產(chǎn)品的工作條件。今天的三維( 3D)與有限元法的應(yīng)用中越來(lái)越廣泛的建模工業(yè)。許多三維建模和有限元的應(yīng)用實(shí)例可以在不同的工程學(xué)科( 谷內(nèi) ,見1993)。 在這項(xiàng)研究中, 一種旋耕機(jī)傳動(dòng)齒輪火車,這是由本地制造商制造,采用Solid Works三維參數(shù)化建模設(shè)計(jì)軟件。三維建模后的程序,進(jìn)行了模擬研究 在利用 COSMOS Works 有限元軟件傳動(dòng)齒輪火車。旋耕機(jī)和第二齒輪箱傳動(dòng)輪系及其三維模型在圖 1中給出的。此外,圖 2 顯示了一個(gè)架構(gòu),是屬于旋耕機(jī)傳動(dòng)系統(tǒng)(不同等人。, 2005)。如下圖所示架構(gòu)的運(yùn)動(dòng)和動(dòng)力的傳遞與拖拉機(jī)動(dòng)力輸出萬(wàn)向節(jié)連接到第一齒輪箱有 2個(gè)螺旋錐齒輪的齒數(shù)的 10和 23,然后 到 第二齒輪箱軸。 2。材料和方法 2.1三維建模及應(yīng)力分析 傳動(dòng)齒輪 根據(jù)齒輪傳動(dòng)齒輪 的原尺寸模型 , 然后他們聚集。通過(guò)圖 3可以看到他們的 3D模型和它的值在表 1中給出的。開始的應(yīng)力分析,我們認(rèn)為,在正常工作條件下工作的齒輪。 在耕作,與旋耕機(jī)的操作,所需的拖拉機(jī)動(dòng)力輸出功率為 49.5千瓦拖拉機(jī)動(dòng)力輸出革命是 540分鐘,根據(jù)拖拉機(jī)動(dòng)力輸出功率和傳動(dòng)比的齒輪,時(shí)刻 齒輪已經(jīng)占用 。 表 1。傳動(dòng)齒輪的值 傳動(dòng)齒輪 的值 齒輪 I 齒輪 II 齒輪 III 模塊 mm 齒數(shù) - 面寬度 - 軸直徑 mm 力矩 Nm 6 6 6 31 43 38 38 38 38 55 82 55 373.00 263.56 292.41 在模擬中,兩種分析各齒輪副齒輪產(chǎn)生( I-II和齒輪 II-III)對(duì)工作條件。分析了已生成的三維,靜態(tài)和線性 COSMOS Works有限元軟件的假設(shè)。各向同性材料屬性中使用的齒輪材料的模擬和性能的了表 2( 庫(kù)塔 , 2003)。裝配時(shí),值得注意的是,在接觸工作齒輪的齒,配對(duì)就在彼此接觸條件下的單。因?yàn)?,?shí)驗(yàn)結(jié)果表明,對(duì)齒輪的表面發(fā)生的最大應(yīng)力和失效對(duì)齒輪接觸區(qū)和齒根單接觸條件( 庫(kù)股 , 1993)。 表 2。齒輪的材料特性 材料 DIN C45 彈性模量 GPa 拉伸強(qiáng)度 MPa 屈服 強(qiáng)度 h MPa 泊松比 - 密度 kg/m3 211 700 500 0.30 7850 2.2齒輪 1和齒輪 II之間 的 應(yīng)力分析 齒輪和齒輪 II 我組裝后,施加邊界條件。齒輪 II固定于其軸軸承。占矩值法旋轉(zhuǎn)軸方向的網(wǎng)格構(gòu)造齒輪我在圖 4中可以看到。 COSMOS Works嚙合的功能已被用于地圖網(wǎng)格。高階(二級(jí))的拋物型固體四面體單元具有四個(gè)角節(jié)點(diǎn), 六中間節(jié)點(diǎn),六邊的高質(zhì)量的網(wǎng)格劃分功能( COSMOS工程建設(shè), 2006) 。 在嚙合操作,共 342160個(gè)元素和獲得 489339 個(gè)節(jié)點(diǎn)的包含,總共 對(duì) 于 嚙合的齒輪 1和齒輪 II 來(lái)說(shuō) 。 在求解過(guò)程中,應(yīng)力分布如圖 5所示的了 , 對(duì)齒輪和齒輪 II。作為一個(gè)結(jié)果的最大等效應(yīng)力( von米塞斯) , 確定對(duì)齒輪工作齒的接觸面為我和 123.59 MPa,73.98 MPa時(shí)最大等效應(yīng)力 由 齒輪工作齒 II 確定。 2.3 齒輪 II 和 齒輪 III 的應(yīng)力分析 在這一部分中,同樣的必要程序,應(yīng)用應(yīng)力分析齒輪 II和齒輪 III施加邊界條 件,生成的網(wǎng)格劃分和求解程序。齒輪 III被固定在軸承和占力矩值應(yīng)用于齒輪 II。在嚙合操作模型,總共有 326600 個(gè)元素 468512總節(jié)點(diǎn)嚙合齒輪 II和 III總齒輪(圖 6)。 結(jié)果圖顯示對(duì)齒輪 II和 III在圖 7齒輪。分析結(jié)果表明,最大等效應(yīng)力發(fā)生在接觸表面加工齒輪 III為 47.13 M Pa。根據(jù)施加的力矩 46.37 M Pa的等效應(yīng)力值對(duì)齒輪 II齒面接觸區(qū)發(fā)生工作。 得到的仿真結(jié)果表明,我們是如何工作的分布應(yīng)力傳動(dòng)齒輪齒。根據(jù)仿真結(jié)果和齒輪材料的屈服應(yīng)力,工作安全系數(shù)占傳動(dòng)齒輪(表 3)。 表 3。傳 動(dòng)齒輪的工作安全系數(shù) 傳動(dòng)齒輪 屈服應(yīng)力產(chǎn)量范圍 M Pa 馮米塞斯 von M Pa 安全系數(shù)。 K coeff. = yield / von 齒輪 I 500 123.59 4.05 齒輪 II 500 73.98 6.76 齒輪 III 500 47.13 10.60 3。結(jié)論 在這項(xiàng)研究中,對(duì)一種旋耕機(jī),由本地制造商制造的傳動(dòng)齒輪的應(yīng)力分布進(jìn)行了模擬。為了這個(gè)目的,傳動(dòng)齒輪進(jìn)行了建模和結(jié)構(gòu)應(yīng)力分析的產(chǎn)生 利用 Solid Works 三維參數(shù)化軟件 COSMOS Works有限 元軟件。 根據(jù)仿真結(jié)果,以下的信息可以說(shuō); 1.當(dāng)傳動(dòng)齒輪進(jìn)行了仿真結(jié)果屈服應(yīng)力的材料的齒輪,齒輪無(wú)故障檢測(cè)。齒輪工作在正常條件下。 2.在應(yīng)力分析齒輪 I和齒輪 II之間,最大等效應(yīng)力在確定齒輪齒的接觸面為工作 123.59 M Pa。在相同的齒輪工作齒結(jié)果 II 73.98兆帕的應(yīng)力值對(duì)接觸表面。 3。在應(yīng)力分析齒輪 II和 III之間的齒輪,最大等效應(yīng)力確定對(duì)齒輪 工作齒接觸面為 47.13 M Pa。確定了 46.37 M Pa的接觸面齒輪 II工作牙最大應(yīng)力值。 4。根據(jù)模擬結(jié)果對(duì)齒輪的最大應(yīng)力,工作安全系數(shù)占齒輪 齒輪齒輪 II和III,如表 3。 使用具有安全系數(shù)高的材料要容易應(yīng)用設(shè)計(jì)者。但這種方式去過(guò)多的成本上升,重量和時(shí)間。避免這些結(jié)果,仿真技術(shù)和計(jì)算機(jī)軟件的使用準(zhǔn)備好的設(shè)計(jì)師,是如此有用的工具和應(yīng)用程序,以獲得時(shí)間和制造成本。此外,它是可能增加的素質(zhì)和能力最佳的機(jī)械和工具在農(nóng)業(yè)機(jī)械化系統(tǒng)的設(shè)計(jì)。 參考文獻(xiàn) 耶爾馬茲,博士, 卡納克基先生 , 2005。一種旋耕機(jī)齒輪失效。工程失效分析,12( 3): 400 404。 2006軟件 COSMOS Works幫助文件, 2006。 COSMOS Works用戶指南。 庫(kù)股 , 1993。機(jī)械元件。科賈埃利 大學(xué) 出版社,第二卷,科賈埃利(土耳其)。 庫(kù)塔 , M.G., 2003。指導(dǎo)制造商。 比爾深 出版社,伊斯坦布爾(土耳其)。 谷內(nèi) , D., 1993。有限元原理方法工程師。(翻譯),薩卡里亞大學(xué)出版社, No.03,薩卡里亞(土耳其)。 奧美資 , A., 2001。園林植物的機(jī)械化。阿克登尼基大學(xué)出版社: No.76,安塔利亞, (土耳其)。 STRESS ANALYSIS ON TRANSMISSION GEARS OF A ROTARY TILLER USING FINITE ELEMENT METHOD Mehmet TOPAKCI a H.Kursat CELIK Deniz YILMAZ Ibrahim AKINCI Akdeniz University, Faculty of Agriculture, Department of Agricultural Machinery, Antalya, Turkey Accepted 12 August 2008 Abstract: Rotary tiller is one of the tillage tools which gets own motion from tractor power take off (PTO) and it had been designed for blend to soil. Soil traffic is decreased to great extent with this tool by blending the soil. Using of rotary tiller is increasing nowadays in our country because of its many benefits. Rotary tiller construction has a gear box that changes motion direction with 90 degrees from tractor PTO, transmission gears for rotation velocity and a rotor shaft which placed as horizontal to soil for blending. There are cutter blades on rotor shaft for breaking into pieces and blend to soil. Especially, on cutter blade and transmission gears, deformations occur because of high vibration, pointless high power, impact effect of soil parts, design-manufacturing error and wrong using conditions. Especially for construction and transmission parts, stress distributions should be determined well for understand failure reasons. In this study, transmission gear train of a rotary tiller which was designed and manufactured by a local manufacturer was modeled as three-dimensional in a parametric design software and structural stress distributions on transmission gears were simulated using a finite element method software according to its operating condition. After evaluating of simulation results, stress distributions on gears show that gears working without failure according to yield stress of gears materials. Additionally, working safety coefficient of gears calculated by reference simulation results. Keywords: Rotary Tiller, Stress Analysis, Finite Elements Method 1. Introduction Rotary tiller is a tillage machine which is used in arable field and fruit gardening agriculture. Rotary tiller has a huge capacity for cutting, mixing to topsoil and preparing the seedbed preparation directly. Additionally, a rotary tiller has more mixing capacity seven times than a plough ( Ozmerzi , 2002). The rotary tiller is attached to three point linkage system of a tractor and it is driven by the tractor PTO (Power Take Off). The motion direction is changed as 90 degrees from tractor PTO to second gear box by horizontal shaft. The rotor shaft gets its motion from second gear box. Rotary tillers elements work under miscellaneous forces because of high vibration, pointless high power, impact effect of soil parts, design-manufacturing errors and wrong using conditions in tillage operation. Therefore, undesired stress distributions occur on its elements. If the elements cannot compensate to the operating forces, these elements become useless because of breaking or high deformation failure. Especially blades and transmission elements have to be durable against to operating forces. Predicting to stress distributions is so important for the designers and manufacturers to generate good working designs and products without failure. Machine manufacturers, which want to prevent for probable errors of their own machines, use materials, which have high safety coefficient, or they use high weight machine elements. Although these prevention methods can be safety, weight and cost of products rise. Helping with developed technologies and design software which integrated in new generation computers, designs are getting easier and reliable. Designers can design own products in virtual screen and they can evaluate working condition of the products by simulating techniques using the computers. Today three-dimensional (3D) modeling and finite elements method applications are getting so widespread in the industry. Many of 3D modeling and finite elements application samples can be seen on different engineering disciplines (Gunay, 1993). In this study, transmission gear train of a rotary tiller, which was designed and manufactured by a local manufacturer, was modeled using Solid works 3D parametric design software. After 3D modeling procedure, a simulation study was carried out on the transmission gear train using Cosmos works finite elements software. Rotary tiller and its second gear box transmission gear train and its 3D model were given in Figure 1. Additionally, Figure 2 shows a schema that is belong to transmission system of rotary tiller (Akinci et al., 2005). As shown in the schema that motion and power transmit with universal joint from tractor PTO output to first gear box that has 2 helical bevel gears which have 10 and 23 number of teeth and then goes to second gear box to rotor shaft. 2. Materials and Methods 2.1 3D Modeling and Stress Analysis of Transmission Gears Transmission gears were modeled according to original dimensions of gears then they were assembled. It can be seen in Figure 3 their 3D model and its values were given in Table 1. Getting started stress analysis, we assumed that gears are working in normal working condition. In the tillage operation with rotary tiller, required tractor PTO power was taken as 49.5 kW and tractor PTO revolution was 540 min According to tractor PTO power and transmission ratios, moments of gears have been accounted. Table 1. Values of Transmission Gears Values of Transmission Gears GEAR I GEARII GEARIII Module mm Number of teeth - Face width - Axel diameter mm Moments Nm 6 6 6 31 43 38 38 38 38 55 82 55 373.00 263.56 292.41 In simulation, two analyses generated for each two gear pairs (Gear I-II and Gear II-III) on working condition. Analyses have been generated in3D, static and linear assumptions in Cosmos works finite elements software. Isotropic material properties were used in simulation and properties of gears material was given at Table 2 (Kutay, 2003). While assembling, it was noted that working gears tooth in contact, paired just at single contact condition with each others. Because, experiments show that maximum stresses and failures on gears occur on gears surface contact zone and tooth root on single contact condition (Curgul, 1993). Table 2. Material Properties of Gears kMaterial DIN C45 Elastic modulus G Pa Tensile strength M Pa Yield strength M Pa Poissons ratio - Density kg/m3 211 700 500 0.30 7850 2.2 Stress Analysis Between on Gear I and Gear II After assembling of Gear I and Gear II, boundary condition was applied. Gear II fixed from bearing of its shaft. Accounted moment value was applied at direction of rotation axis to Gear I and its mesh construction can be seen in Figure 4. Cosmos works meshing functions have been used to map the meshing. Higher-order (Second-order) parabolic solid tetrahedral element which has four corner nodes, six mid-side nodes, and six edges attached by meshing function for high quality mesh construction (Cosmos Works, 2006). After meshing operation, 342160 total elements and 489339 total nodes obtained for meshed Gear I and Gear II in total. After solve process, stress distributions has been shown in Figure 5 for pairs of Gear I and Gear II. As a result maximum equivalent stress (Von Mises) determined on the contact surface of working teeth of Gear I as 123.59 M Pa and 73.98 M Pa maximum equivalent stresses determined on working teeth of Gear II. 2.3 Stress Analysis Between on Gear II and Gear III In this section, same necessary procedures are applied for stress analysis of Gear II and Gear III. Boundary conditions are applied, generated meshing and solve procedure. Gear III has been fixed on bearing and accounted moment value is applied to Gear II. After meshing operation models have 326600 total elements and 468512 total nodes for meshed Gear II and Gear III in total (Figure 6). Result plots were showed for pairs of Gear II and Gear III in Figure 7. Analysis results show that maximum equivalent stress occurred on contact surface working teeth of Gear III as 47.13 M Pa. According to applied moment 46.37 M Pa equivalent stress value occurred on contact zone of working teeth of Gear II. Obtained simulation results show us to how is distributing stresses on working teeth of transmission gears. According to simulation results and yield stress of gears material, working safety coefficient accounted for transmission gears (Table 3). Table 3. Working Safety Coefficient for Transmission Gears TRANSMISSION GEARS YIELD STRESS yield MPa VON MISES von MPa SAFETY COEFF. K coeff. = yield / von GEAR I 500 123.59 4.05 GEAR II 500 73.98 6.76 GEAR III 500 47.13 10.60 3. Conclusions In this study, stress distributions were simulated on transmission gears of a rotary tiller which designed and manufactured by local manufacturer. For this aim, transmission gears were modeled and structural stress analysis was generated using Solid works 3D parametric software and Cosmos works finite elements software. According to simulation results, following notes can be said; 1. When transmission gears were evaluated in the simulation results according to yield stress of gears material, no failure was detected on gears. Gears are working on normal condition. 2. In stress analysis between Gear I and Gear II, maximum equivalent stress was determined on contact surface of working teeth of Gear I as 123.59 M Pa. In same results plot of Gear II working teeth has 73.98 M Pa stress value on contact surface. 3. In stress analysis between Gear II and Gear III, maximum equivalent stre

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論