已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
教學(xué)資料范本2019-2020版數(shù)學(xué)新學(xué)案北師大版選修2-1練習(xí):第三章圓錐曲線與方程 3.2.1 含解析編 輯:_時 間:_2拋物線2.1拋物線及其標(biāo)準(zhǔn)方程課后訓(xùn)練案鞏固提升A組1.拋物線y2=4x的焦點坐標(biāo)為()A.(0,1)B.(1,0)C.(0,2)D.(2,0)解析:(直接計算法)因為p=2,所以拋物線y2=4x的焦點坐標(biāo)為(1,0),應(yīng)選B.答案:B2.拋物線y2=24ax(a0)上有一點M,它的橫坐標(biāo)是3,它到焦點的距離是5,則拋物線的方程為()A.y2=8xB.y2=12xC.y2=16xD.y2=20x解析:由題意知,3+6a=5,a=,拋物線方程為y2=8x.答案:A3.拋物線x2=y上的一點M到焦點的距離為1,則點M到x軸的距離是()A.B.C.1D.解析:由準(zhǔn)線方程為y=-,可知M到準(zhǔn)線的距離為1,點M到x軸的距離等于1-.答案:D4.若點A的坐標(biāo)為(3,2),F為拋物線y2=2x的焦點,點P在拋物線上移動,為使|PA|+|PF|取得最小值,則點P的坐標(biāo)是()A.B.(2,2)C.(1,)D.(0,0)解析:如圖,作PHy軸,交拋物線準(zhǔn)線于H,則|PA|+|PF|=|PA|+|PH|AH|,當(dāng)H,P,A三點共線時,|PA|+|PF|最小,此時,點P的縱坐標(biāo)為2,故選B.答案:B5.拋物線y2=2px(p0)上有A(x1,y1),B(x2,y2),C(x3,y3)三點,F是焦點,|AF|,|BF|,|CF|成等差數(shù)列,則()A.x1,x2,x3成等差數(shù)列B.x1,x3,x2成等差數(shù)列C.y1,y2,y3成等差數(shù)列D.y1,y3,y2成等差數(shù)列解析:由定義,知|AF|=x1+,|BF|=x2+,|CF|=x3+.|AF|,|BF|,|CF|成等差數(shù)列,2,即2x2=x1+x3.故選A.答案:A6.設(shè)斜率為2的直線l過拋物線y2=ax(a0)的焦點F,且和y軸交于點A,若OAF(O為坐標(biāo)原點)的面積為4,則拋物線方程為()A.y2=4xB.y2=8xC.y2=4xD.y2=8x解析:由已知可得拋物線y2=ax的焦點F的坐標(biāo)為.過焦點且斜率為2的直線方程為y=2,令x=0得y=-,故點A的坐標(biāo)為.由題意可得=4,a2=64,a=8.答案:B7.已知過拋物線y2=4x的焦點F的直線交該拋物線于A,B兩點,|AF|=2,則|BF|=.解析:設(shè)點A的坐標(biāo)為(x,y).因為|AF|=2,所以x-(-1)=2,所以x=1.所以A(1,2).又點F的坐標(biāo)為(1,0),所以|BF|=|AF|=2.答案:28.在平面直角坐標(biāo)系xOy中,有一定點A(2,1).若線段OA的垂直平分線過拋物線y2=2px(p0)的焦點,則該拋物線的準(zhǔn)線方程是.解析:OA的垂直平分線交x軸于點,此為拋物線的焦點,故準(zhǔn)線方程為x=-.答案:x=-9.若點P到點(1,0)的距離比到直線x+2=0的距離小1,則點P的軌跡方程是.解析:(方法1)設(shè)點P的坐標(biāo)為(x,y),由題意得+1=|x+2|,=|x+2|-1=x+1.兩邊平方得(x-1)2+y2=(x+1)2,x2-2x+1+y2=x2+2x+1,y2=4x,點P的軌跡方程為y2=4x.(方法2)由題意可知,點P到點(1,0)的距離比到直線x+2=0的距離小1,點P到點(1,0)與到x+1=0的距離相等.故點P的軌跡是以(1,0)為焦點,x+1=0為準(zhǔn)線的拋物線,其方程為y2=4x.答案:y2=4x10.求滿足下列條件的拋物線的標(biāo)準(zhǔn)方程.(1)焦點在直線3x+4y-12=0上;(2)焦點是(-2,0);(3)準(zhǔn)線是y=-;(4)焦點到準(zhǔn)線的距離是2;(5)焦點到直線x=-5的距離是8.解(1)直線與坐標(biāo)軸的交點為(4,0)和(0,3),故拋物線有兩種情況:焦點為(4,0)時,=4,p=8,方程為y2=16x;焦點為(0,3)時,=3,p=6,方程為x2=12y.故所求方程為y2=16x或x2=12y.(2)焦點為(-2,0),=2,p=4,方程為y2=-8x.(3)準(zhǔn)線為y=-,p=3,開口向上,方程為x2=6y.(4)由于p=2,開口方向不確定,故有四種情況.方程為y2=4x或y2=-4x或x2=4y或x2=-4y.(5)焦點在x軸上,設(shè)為(x0,0),|x0+5|=8,x0=3或x0=-13,焦點為(3,0)或(-13,0),=3或-13,p=6或-26.方程為y2=12x或y2=-52x.B組1.若點P在拋物線y2=x上,點Q在圓(x-3)2+y2=1上,則|PQ|的最小值為()A.B.+1C.-1D.1解析: 如圖所示,設(shè)已知圓圓心為C,則|PQ|min=|PC|min-1.設(shè)P(x,y),則有|PC|2=(x-3)2+y2=(x-3)2+x=x2-5x+9=,|PC|min=,即|PQ|min=-1.答案:C2.設(shè)x1,x2R,常數(shù)a0,定義運算“*”:x1*x2=(x1+x2)2-(x1-x2)2,若x0,則動點P(x,)的軌跡方程是.解析:由y=,得y2=x*a=(x+a)2-(x-a)2=4ax(y0).答案:y2=4ax(y0)3.已知點M(-2,4)及焦點為F的拋物線y=x2,在拋物線上求一點P,使得|PM|+|PF|的值最小,并求出最小值.解拋物線的方程可化為x2=8y,其焦點為F(0,2),準(zhǔn)線為y=-2,將x=-2代入拋物線方程,得y=,因為點M的縱坐標(biāo)4,所以點M在拋物線的上側(cè),如圖所示,設(shè)點P到準(zhǔn)線的距離為d,則由拋物線的定義,得|PF|=d,所以|PM|+|PF|=|PM|+d,通過觀察易得,當(dāng)點P和點M的橫坐標(biāo)相同時,|PM|+d最小,此時點P的坐標(biāo)為,最小值為4-(-2)=6.4.某河上有座拋物線形拱橋,當(dāng)水面距拱頂5 m時,水面寬8 m,一木船寬4 m,高2 m,載貨后此船露在水面上的部分高為 m,問:水面上漲到與拱頂相距多少時,木船開始不能通航?解以拱橋的拱頂為坐標(biāo)原點,建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線方程為x2=-2py(p0),由題意知,點A(4,-5)在拋物線上(設(shè)AA為水面寬,且AA=8 m),所以16=-2p(-5),2p=,所以拋物線方程為x2=-y(-4x4),設(shè)水面上漲到船面兩側(cè)與拱橋接觸于B,B(B與B關(guān)于y軸對稱)時,船開始不能通航,設(shè)B點坐標(biāo)為(2,y),由22=-y,得y=-,此時水面與拋物線拱頂相距|y|+=2(m).故水面上漲到與拱頂相距2 m時,船開始不能通航.5.如圖,AB為拋物線y=x2上的動弦,且|AB|=a(a為常數(shù),且a1),求弦AB的中點M與x軸的最近距離.解設(shè)點A,M,B的縱坐標(biāo)分別為y1,y2,y3.A,M,B三點在拋物線準(zhǔn)線上的射影分別為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版粉煤灰運輸環(huán)保風(fēng)險評估與治理服務(wù)合同3篇
- 二零二五年服務(wù)合同違約金支付與損害賠償3篇
- 二零二五版地下室房屋租賃合同附條件續(xù)約協(xié)議3篇
- 二零二五版旅游景點停車場車位租賃及旅游服務(wù)合同3篇
- 二零二五版硅酮膠產(chǎn)品市場調(diào)研與分析合同3篇
- 二零二五版白酒瓶裝生產(chǎn)線租賃與回購合同3篇
- 二零二五年度養(yǎng)老社區(qū)場地租賃與管理合同3篇
- 二零二五版消防安全評估與應(yīng)急預(yù)案合同3篇
- 2025年度綠色建筑節(jié)能改造合同范本2篇
- 二零二五版房產(chǎn)抵押合同變更及合同終止協(xié)議3篇
- 大學(xué)計算機基礎(chǔ)(第2版) 課件 第1章 計算機概述
- 數(shù)字化年終述職報告
- 《阻燃材料與技術(shù)》課件 第5講 阻燃塑料材料
- 2025年蛇年年度營銷日歷營銷建議【2025營銷日歷】
- 2024年職工普法教育宣講培訓(xùn)課件
- 安保服務(wù)評分標(biāo)準(zhǔn)
- T-SDLPA 0001-2024 研究型病房建設(shè)和配置標(biāo)準(zhǔn)
- (人教PEP2024版)英語一年級上冊Unit 1 教學(xué)課件(新教材)
- 全國職業(yè)院校技能大賽高職組(市政管線(道)數(shù)字化施工賽項)考試題庫(含答案)
- 2024胃腸間質(zhì)瘤(GIST)診療指南更新解讀 2
- 光儲電站儲能系統(tǒng)調(diào)試方案
評論
0/150
提交評論