黑龍江省大慶市鐵人中學2018_2019學年高二數(shù)學下學期期中試題文(含解析).docx_第1頁
黑龍江省大慶市鐵人中學2018_2019學年高二數(shù)學下學期期中試題文(含解析).docx_第2頁
黑龍江省大慶市鐵人中學2018_2019學年高二數(shù)學下學期期中試題文(含解析).docx_第3頁
黑龍江省大慶市鐵人中學2018_2019學年高二數(shù)學下學期期中試題文(含解析).docx_第4頁
黑龍江省大慶市鐵人中學2018_2019學年高二數(shù)學下學期期中試題文(含解析).docx_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

大慶鐵人中學高二學年下學期期中考試數(shù)學試題(文)第卷一、選擇題(本大題包括12小題,每小題5分,共60分,每小題給出的四個選項中,只有一項是符合題目要求的,請將正確選項填涂在答題卡上)1.復數(shù)的模是()A. B. C. D. 【答案】D【解析】【分析】先將復數(shù)化成形式,再求模。【詳解】所以模是 故選D.【點睛】本題考查復數(shù)的計算,解題的關(guān)鍵是將復數(shù)化成形式,屬于簡單題。2.用反證法證明命題:“若,則至少有一個大于0.”下列假設(shè)中正確的是( )A. 假設(shè)都不大于B. 假設(shè)都小于C. 假設(shè)至多有一個大于0D. 假設(shè)至少有一個小于【答案】A【解析】【分析】根據(jù)反證法的概念,利用命題的否定,即可求解【詳解】根據(jù)反證法的概念,可得用反證法證明命題:“若,則至少有一個大于0.”中假設(shè)應(yīng)為“假設(shè)都不大于”,故選A【點睛】本題主要考查了反證的概念的辨析,其中熟記反證法的概念,利用命題的否定,準確判定是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題3.若,則的大小關(guān)系是( )A. B. C. D. 無法確定【答案】B【解析】【分析】由題意,求得和,得出,即可比較的大小關(guān)系,得到答案【詳解】由,可得,因為,所以,且,所以,故選B【點睛】本題主要考查了分析法的判定及應(yīng)用去,其中解答中正確確定和的大小關(guān)系是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題4. 執(zhí)行如圖所示的程序框圖,若輸出的S=48,則輸入k的值可以為( )A. 6B. 10C. 4D. 8【答案】D【解析】試題分析:第一次進入循環(huán),第二次進入循環(huán),第三次進入循環(huán),所以得到所以可能的值是8,故選D考點:循環(huán)結(jié)構(gòu)5.函數(shù)的最大值是( )A. B. C. D. 【答案】A【解析】【分析】先利用導數(shù)判斷函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性求最大值.【詳解】由題得,所以函數(shù)f(x)在上單調(diào)遞減,所以,故選:A【點睛】本題主要考查利用導數(shù)求函數(shù)的最值,意在考查學生對該知識的理解掌握水平和分析推理能力.6.極坐標方程表示的曲線為( )A. 兩條相交直線B. 極軸C. 一條直線D. 極點【答案】A【解析】【分析】根據(jù)極坐標與直角坐標的互化公式,化簡極坐標方程為,即可得到答案【詳解】由題意,極坐標方程,可得,即,可得,又由,代入可得,即,所以表示的曲線為兩條相交直線,故選A【點睛】本題主要考查了極坐標與直角坐標的互化,其中解答中熟記極坐標與直角坐標的互化公式,準確化簡是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題7.已知點在曲線上移動,設(shè)曲線在點處的切線斜率為,則的取值范圍是( )A. B. C. D. 【答案】B【解析】【分析】點P在函數(shù)圖像上移動即表示函數(shù)P為函數(shù)圖像上任意一點,所以直接對函數(shù)求導,然后找到導數(shù)的取值范圍即為切線斜率的取值范圍?!驹斀狻恳驗?,所以恒成立,故切線斜率,故選B?!军c睛】本題考查導數(shù)定義:函數(shù)在某一點的導數(shù)即為函數(shù)圖像在該點切線的斜率。8.下面幾種推理中是演繹推理的為( )A. 由金、銀、銅、鐵可導電,猜想:金屬都可導電B. 猜想數(shù)列的通項公式為C. 半徑為的圓的面積,則單位圓的面積D. 由平面直角坐標系中圓的方程為,推測空間直角坐標系中球的方程為【答案】C【解析】【分析】根據(jù)合情推理與演繹推理的概念,得到A是歸納推理,B是歸納推理,C是演繹推理,D是類比推理,即可求解【詳解】根據(jù)合情推理與演繹推理的概念,可得:對于A中, 由金、銀、銅、鐵可導電,猜想:金屬都可導電,屬于歸納推理;對于B中, 猜想數(shù)列的通項公式為,屬于歸納推理,不是演繹推理;對于C中,半徑為的圓的面積,則單位圓的面積,屬于演繹推理;對于D中, 由平面直角坐標系中圓的方程為,推測空間直角坐標系中球的方程為,屬于類比推理,綜上,可演繹推理的C項,故選C【點睛】本題主要考查了合情推理與演繹推理的概念及判定,其中解答中熟記合情推理和演繹推理的概念,以及推理的規(guī)則是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題9.若函數(shù)在區(qū)間上是減函數(shù),則實數(shù)的取值范圍為()A. B. C. D. 【答案】D【解析】【分析】求出f(x)的導函數(shù),令導函數(shù)小于等于0在區(qū)間(1,+)上恒成立,分離出a,求出函數(shù)的最大值,求出a的范圍【詳解】f(x)在區(qū)間(1,+)上是減函數(shù),在區(qū)間(1,+)上恒成立ax2在區(qū)間(1,+)上恒成立x21a1,經(jīng)檢驗,等號成立故選:D【點睛】本題考查導數(shù)與函數(shù)的單調(diào)性,解決已知函數(shù)的單調(diào)性求參數(shù)范圍問題常轉(zhuǎn)化為導函數(shù)大于等于(或小于等于)0恒成立;解決不等式恒成立求參數(shù)范圍問題常分離參數(shù)轉(zhuǎn)化為求函數(shù)的最值,是基礎(chǔ)題10.設(shè)三邊長分別為,的面積為,內(nèi)切圓半徑為,則;類比這個結(jié)論可知:四面體的四個面的面積分別為,內(nèi)切球的半徑為,四面體的體積為,則( )A. B. C. D. 【答案】C【解析】【分析】根據(jù)平面與空間之間的類比推理,由點類比直線,由直線類比平面,由內(nèi)切圓類比內(nèi)切球,由平面圖形的面積類比立體圖形的體積,結(jié)合求三角形的面積的方法類比求四面體的體積,即可求解【詳解】設(shè)四面體的內(nèi)切球的球心為,則 球心到四面體的距離都是,所以四面體的體積等于以為頂點,分別以四個面為底面的4個三棱錐的體積和,則四面體的體積為,所以,故選C【點睛】本題主要考查了類比推理的應(yīng)用,其中對于類比推理的步驟:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的結(jié)論,熟記類比推理的概念是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題11.在偵破某一起案件時,警方要從甲、乙、丙、丁四名可疑人員中查出真正的嫌疑人,現(xiàn)有四條明確信息:(1)此案是兩人共同作案;(2)若甲參與此案,則丙一定沒參與;(3)若乙參與此案,則丁一定參與;(4)若丙沒參與此案,則丁也一定沒參與.據(jù)此可以判斷參與此案的兩名嫌疑人是( )A. 丙、丁B. 乙、丙C. 甲、乙D. 甲、丁【答案】A【解析】【分析】假設(shè)參與此案的兩名嫌疑人是甲、乙或乙、丙或甲、丁或丙、丁,依次分析題設(shè)條件,能求出結(jié)果【詳解】假設(shè)參與此案的兩名嫌疑人是丙、丁,符合題意,故A正確;假設(shè)參與此案的兩名嫌疑人是乙、丙,則由乙參與此案,得丁一定參與,不合題意,故B錯誤;假設(shè)參與此案的兩名嫌疑人是甲、乙,則由乙參與此案,得丁一定參與,不合題意,故C錯誤;假設(shè)參與此案的兩名嫌疑人是甲、丁,則由甲參與此案,則丙一定沒參與,丙沒參與此案,則丁也一定沒參與,不合題意,故D錯誤;故選:A【點睛】本題考查參與此案的兩名嫌疑人的判斷,考查合情推理的基礎(chǔ)知識,是基礎(chǔ)題12.已知函數(shù),若,使得成立,則實數(shù)的取值范圍是( )A. B. C. D. 【答案】C【解析】由得,設(shè),則存在,使得成立,即成立.所以恒成立,所以成立又當且僅當即取等號.所以,故選C.點晴:本題主要考查函數(shù)單調(diào)性,不等式恒成立問題. 本題中由可構(gòu)造函數(shù),則即恒成立,轉(zhuǎn)化為,再求的最值即可.這類問題的通解方法就是:劃歸與轉(zhuǎn)化之后,就可以假設(shè)相對應(yīng)的函數(shù),然后利用導數(shù)研究這個函數(shù)的單調(diào)性、極值和最值,圖像與性質(zhì),進而求解得結(jié)果.第卷二、填空題(本大題包括4小題,每小題5分,共20分,把正確答案填在答題卡中的橫線上).13.已知復數(shù),為虛數(shù)單位),且為純虛數(shù),則實數(shù)的值為_【答案】1【解析】【分析】直接利用復數(shù)代數(shù)形式的加減運算化簡,再由實部為0求解【詳解】,由為純虛數(shù),得故答案為:1【點睛】本題考查復數(shù)代數(shù)形式的加減運算,考查復數(shù)的基本概念,是基礎(chǔ)題14.函數(shù)的圖象與直線有三個交點,則實數(shù)的取值范圍為_.【答案】【解析】【分析】根據(jù)題目求出函數(shù)的極大值和極小值,要使與有三個交點,則可得到的取值在極大值和極小值之間。【詳解】由題意得,令,解得或,易得當時,單調(diào)遞增,當,單調(diào)遞減,當時,單調(diào)遞增,所以為極大值,為極小值,所以?!军c睛】本題考查函數(shù)圖像交點個數(shù),一般通過函數(shù)的大致圖像和極值點決定。15.觀察下列式子:根據(jù)以上式子可以猜想:_【答案】【解析】【分析】確定的不等式的左邊各式分子是1,分母值自然數(shù)的平方和,右邊分母與最后一項的分母相同,分子是以3為首項,2為公差的等差數(shù)列,即可求解【詳解】由已知中的不等式可知不等式的左邊各式分子是1,分母值自然數(shù)的平方和,右邊分母與最后一項的分母相同,分子是以3為首項,2為公差的等差數(shù)列,所以不等式右邊的第2018項為所以【點睛】本題考查了合情推理,對于合情推理主要包括歸納推理和類比推理數(shù)學研究中,在得到一個新結(jié)論前,合情推理能幫助猜測和發(fā)現(xiàn)結(jié)論,在證明一個數(shù)學結(jié)論之前,合情推理常常能為證明提供思路與方向合情推理僅是“合乎情理”的推理,它得到的結(jié)論不一定正確而演繹推理得到的結(jié)論一定正確(前提和推理形式都正確的前提下)16.設(shè)是定義在上的函數(shù),其導函數(shù)為,若,則不等式(其中為自然對數(shù)的底數(shù))的解集為_【答案】.【解析】【分析】由,構(gòu)造新函數(shù),求導,利用已知的不等式,可以判斷出函數(shù)的單調(diào)性,從而利用單調(diào)性求出不等式的解集.【詳解】,構(gòu)造新函數(shù),且,不等式變?yōu)?,由已知,所以是上的減函數(shù),因為,所以,因此不等式(其中為自然對數(shù)的底數(shù))的解集為.【點睛】本題考查了通過構(gòu)造函數(shù)求解不等式的解集問題.解決本題的關(guān)鍵是根據(jù)所求不等式的特征進行恰當?shù)淖冃?,?gòu)造新函數(shù),利用已知的不等式,可以判斷出新函數(shù)的單調(diào)性,從而解決本問題.三、解答題(本大題包括6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟)17.地震、海嘯、洪水、森林大火等自然災(zāi)害頻繁出現(xiàn),緊急避險常識越來越引起人們的重視某校為了了解學生對緊急避險常識的了解情況,從高一年級和高二年級各選取100名同學進行緊急避險常識知識競賽圖(1)和圖(2)分別是對高一年級和高二年級參加競賽的學生成績按,分組,得到的頻率分布直方圖()根據(jù)成績頻率分布直方圖分別估計參加這次知識競賽的兩個年級學生的平均成績; ()完成下面列聯(lián)表,并回答是否有的把握認為“兩個年級學生對緊急避險常識的了解有差異”?成績小于60分人數(shù)成績不小于60分人數(shù)合計高一年級高二年級合計附:臨界值表:0.100.050.0102.7063.8416.635【答案】()60分;()有.【解析】分析】()利用平均數(shù)的計算公式,即可分別求解高一年級和高二年級學生競賽平均成績;()列出列聯(lián)表,利用公式求解得值,即可得到結(jié)論【詳解】()高一年級學生競賽平均成績?yōu)椋ǚ郑?,高二年級學生競賽平均成績?yōu)椋ǚ郑ǎ┝新?lián)表如下:成績小于60分人數(shù)成績不小于60分人數(shù)合計七年級7030100八年級5050100合計12080200則,有99%的把握認為“兩個年級學生對緊急避險常識的了解有差異”【點睛】本題主要考查了平均數(shù)的計算,以及獨立性檢驗的應(yīng)用,其中解答中認真審題,合理利用平均數(shù)的公式和獨立性檢驗的公式,準確計算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題18.已知函數(shù),當時,取得極小值.()求的值;()求函數(shù)在上的最大值和最小值.【答案】();()2,.【解析】【分析】()由題得,解方程組即得解,再檢驗即得解;()利用導數(shù)求函數(shù)在上的最大值和最小值.【詳解】() , 因為x=1時,f(x)有極小值2, , 所以 , 所以, 經(jīng)檢驗符合題意. ()由()知當時,由,由,所以上單調(diào)遞減,在(1,2)上單調(diào)遞增, 所以 又由,得.【點睛】本題主要考查利用導數(shù)研究函數(shù)的極值和最值,意在考查學生對這些知識的理解掌握水平和分析推理能力.19.在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以直角坐標系原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為()寫出曲線的極坐標方程和曲線的直角坐標方程;()設(shè)點在上,點在上,且,求面積最大值【答案】(1),;(2)【解析】【分析】(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程直角坐標方程和極坐標方程之間進行轉(zhuǎn)換(2)直接利用(1)的結(jié)論和三角形的面積公式的應(yīng)用求出結(jié)果【詳解】(1)曲線C1的參數(shù)方程為(為參數(shù)),轉(zhuǎn)換為直角坐標方程為:(x-2)2+y2=4,轉(zhuǎn)換為極坐標方程為:=4cos曲線C2極坐標方程為=2sin,轉(zhuǎn)換為直角坐標方程為:x2+y2-2y=0(2)點P在C1上,點Q在C2上,且POQ=,則:=,因為,所以,所以當時,此時的面積由最大值,此時最大值為【點睛】本題主要考查了參數(shù)方程直角坐標方程和極坐標方程之間的轉(zhuǎn)換,二元二次方程組的解法及應(yīng)用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型20.一只藥用昆蟲的產(chǎn)卵數(shù)與一定范圍內(nèi)與溫度有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:溫度/212324272932產(chǎn)卵數(shù)/個61120275777(1)若用線性回歸模型,求關(guān)于的回歸方程=x+(精確到0.1);(2)若用非線性回歸模型求關(guān)的回歸方程為 且相關(guān)指數(shù)( i )試與 (1)中的線性回歸模型相比,用 說明哪種模型的擬合效果更好. ( ii )用擬合效果好的模型預(yù)測溫度為時該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)). 附:一組數(shù)據(jù)(x1,y1), (x2,y2), ,(xn,yn), 其回歸直線=x+的斜率和截距的最小二乘估計為,相關(guān)指數(shù)。【答案】(1)=6.6x138.6(2)回歸方程 比線性回歸方程=6.6x138.6擬合效果更好190個【解析】分析:(1)根據(jù)表格中數(shù)據(jù)及平均數(shù)公式可求出與的值從而可得樣本中心點的坐標,從而求可得公式中所需數(shù)據(jù),求出,再結(jié)合樣本中心點的性質(zhì)可得,進而可得關(guān)于的回歸方程;(2) 根據(jù)相關(guān)指數(shù)的大小,即可比較模型擬合效果的優(yōu)劣;代入回歸方程求值計算即可得結(jié)果.詳解:(1)由題意得,所以,關(guān)于的線性回歸方程為;(2)由所給數(shù)據(jù)求得的線性回歸方程為,相關(guān)指數(shù)為.因為,所以回歸方程比線性回歸方程擬合效果更好.由得當溫度時,即當溫度時,該種藥用昆蟲的產(chǎn)卵數(shù)估計為190個.點睛:求回歸直線方程的步驟:確定兩個變量具有線性相關(guān)關(guān)系;計算的值;計算回歸系數(shù);寫出回歸直線方程為; 回歸直線過樣本點中心是一條重要性質(zhì),利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.21.已知極坐標系的極點與直角坐標系的原點重合,極軸與軸的非負半軸重合若曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù))()求曲線的直角坐標方程與直線的普通方程;()設(shè)點,直線與曲線交于兩點,求的值【答案】(),;()9.【解析】【分析】()根據(jù)極坐標與直角坐標互化公式,即可求解曲線的直角坐標方程,消去參數(shù),即可得到直線的普通方程;()由題意,把直線l的參數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論