




已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)的運(yùn)算 (一)整數(shù)四則運(yùn)算 1整數(shù)加法:把兩個(gè)數(shù)合并成一個(gè)數(shù)的運(yùn)算叫做加法。 在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分?jǐn)?shù),和是總數(shù)。 加數(shù)+加數(shù)=和 一個(gè)加數(shù)=和另一個(gè)加數(shù) 2整數(shù)減法:已知兩個(gè)加數(shù)的和與其中的一個(gè)加數(shù),求另一個(gè)加數(shù)的運(yùn)算叫做減法。 在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)是總數(shù),減數(shù)和差分別是部分?jǐn)?shù)。 加法和減法互為逆運(yùn)算。 3整數(shù)乘法:求幾個(gè)相同加數(shù)的和的簡(jiǎn)便運(yùn)算叫做乘法。 在乘法里,相同的加數(shù)和相同加數(shù)的個(gè)數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。 在乘法里,0和任何數(shù)相乘都得0. 1和任何數(shù)相乘都的任何數(shù)。一個(gè)因數(shù)一個(gè)因數(shù)=積 一個(gè)因數(shù)=積另一個(gè)因數(shù)4 整數(shù)除法:已知兩個(gè)因數(shù)的積與其中一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算叫做除法。 乘法和除法互為逆運(yùn)算。 在除法里,0不能做除數(shù)。 被除數(shù)除數(shù)=商 除數(shù)=被除數(shù)商 被除數(shù)=商除數(shù) (二)小數(shù)四則運(yùn)算 1. 小數(shù)加法:小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個(gè)數(shù)合并成一個(gè)數(shù)的運(yùn)算。 2. 小數(shù)減法:小數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個(gè)加數(shù)的和與其中的一個(gè)加數(shù),求另一個(gè)加數(shù)的運(yùn)算。 3. 小數(shù)乘法:小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義相同,就是求幾個(gè)相同加數(shù)和的簡(jiǎn)便運(yùn)算;一個(gè)數(shù)乘純小數(shù)的意義是求這個(gè)數(shù)的十分之幾、百分之幾、千分之幾是多少。 4. 小數(shù)除法:小數(shù)除法的意義與整數(shù)除法的意義相同,就是已知兩個(gè)因數(shù)的積與其中一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算。5. 乘方:求幾個(gè)相同因數(shù)的積的運(yùn)算叫做乘方。例如 3 3 =32(三)分?jǐn)?shù)四則運(yùn)算1. 分?jǐn)?shù)加法:分?jǐn)?shù)加法的意義與整數(shù)相同。 都是把兩個(gè)數(shù)合并成一個(gè)數(shù)的運(yùn)算。 2. 分?jǐn)?shù)減法:分?jǐn)?shù)減法的意義與整數(shù)減法的意義相同。已知兩個(gè)加數(shù)的和與其中的一個(gè)加數(shù),求另一個(gè)加數(shù)的運(yùn)算。 3. 分?jǐn)?shù)乘法:a分?jǐn)?shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個(gè)相同加數(shù)的和的簡(jiǎn)便運(yùn)算。b一個(gè)數(shù)與分?jǐn)?shù)相乘,可以看作是求這個(gè)數(shù)的幾分之幾是多少。 4. 乘積是1的兩個(gè)數(shù)叫做互為倒數(shù)。 5. 分?jǐn)?shù)除法:分?jǐn)?shù)除法的意義與整數(shù)除法的意義相同。就是已知兩個(gè)因數(shù)的積與其中一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算。 (四)運(yùn)算定律 1. 加法交換律:兩個(gè)數(shù)相加,交換加數(shù)的位置,它們的和不變,即a+b=b+a . 2. 加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,再加上第三個(gè)數(shù);或者先把后兩個(gè)數(shù)相加,再和第一個(gè)數(shù)相加它們的和不變,即(a+b)+c=a+(b+c) .3. 乘法交換律:兩個(gè)數(shù)相乘,交換因數(shù)的位置它們的積不變,即ab=ba. 4. 乘法結(jié)合律:三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,再乘以第三個(gè)數(shù);或者先把后兩個(gè)數(shù)相乘,再和第一個(gè)數(shù)相乘,它們的積不變,即(ab)c=a(bc) .5. 乘法分配律:兩個(gè)數(shù)的和與一個(gè)數(shù)相乘,可以把兩個(gè)加數(shù)分別與這個(gè)數(shù)相乘再把兩個(gè)積相加,即(a+b)c=ac+bc . 6. 減法的性質(zhì):從一個(gè)數(shù)里連續(xù)減去幾個(gè)數(shù),可以從這個(gè)數(shù)里減去所有減數(shù)的和,差不變,即a-b-c=a-(b+c) . (五)運(yùn)算法則1. 整數(shù)加法計(jì)算:相同數(shù)位對(duì)齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進(jìn)一。 2. 整數(shù)減法計(jì)算法則:相同數(shù)位對(duì)齊,從低位加起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并在一起,再減。 3. 整數(shù)乘法計(jì)算法則:先用一個(gè)因數(shù)每一位上的數(shù)分別去乘另一個(gè)因數(shù)各個(gè)數(shù)位上的數(shù),用因數(shù)哪一位上的數(shù)去乘,乘得的數(shù)的末尾就對(duì)齊哪一位,然后把各次乘得的數(shù)加起來(lái)。 4. 整數(shù)除法計(jì)算法則:先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位; 如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補(bǔ)“0”占位。每次除得的余數(shù)要小于除數(shù)。 5. 小數(shù)乘法法則:先按照整數(shù)乘法的計(jì)算法則算出積,再看因數(shù)中共有幾位小數(shù),就從積的右邊起數(shù)出幾位,點(diǎn)上小數(shù)點(diǎn);如果位數(shù)不夠,就用“0”補(bǔ)足。 6. 除數(shù)是整數(shù)的小數(shù)除法計(jì)算法則:先按照整數(shù)除法的法則去除,商的小數(shù)點(diǎn)要和被除數(shù)的小數(shù)點(diǎn)對(duì)齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“0”,再繼續(xù)除。 7. 除數(shù)是小數(shù)的除法計(jì)算法則:先移動(dòng)除數(shù)的小數(shù)點(diǎn),使它變成整數(shù),除數(shù)的小數(shù)點(diǎn)也向右移動(dòng)幾位(位數(shù)不夠的補(bǔ)“0”),然后按照除數(shù)是整數(shù)的除法法則進(jìn)行計(jì)算。 8. 同分母分?jǐn)?shù)加減法計(jì)算方法:同分母分?jǐn)?shù)相加減,只把分子相加減,分母不變。 9. 異分母分?jǐn)?shù)加減法計(jì)算方法:先通分,然后按照同分母分?jǐn)?shù)加減法的的法則進(jìn)行計(jì)算。 10. 帶分?jǐn)?shù)加減法的計(jì)算方法:整數(shù)部分和分?jǐn)?shù)部分分別相加減,再把所得的數(shù)合并起來(lái)。 11. 分?jǐn)?shù)乘法的計(jì)算法則:分?jǐn)?shù)乘整數(shù),用分?jǐn)?shù)的分子和整數(shù)相乘的積作分子,分母不變;分?jǐn)?shù)乘分?jǐn)?shù),用分子相乘的積作分子,分母相乘的積作分母。 12. 分?jǐn)?shù)除法的計(jì)算法則:甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。 (六) 運(yùn)算順序 1. 小數(shù)四則運(yùn)算的運(yùn)算順序和整數(shù)四則運(yùn)算順序相同。 2. 分?jǐn)?shù)四則運(yùn)算的運(yùn)算順序和整數(shù)四則運(yùn)算順序相同。 3. 沒(méi)有括號(hào)的混合運(yùn)算:同級(jí)從左往右依次運(yùn)算;兩級(jí)運(yùn)算 先算乘、除法,后算加減法。 4. 有括號(hào)的混合運(yùn)算:先算小括號(hào)里面的,再算中括號(hào)里面的,最后算括號(hào)外面的。 5. 第一級(jí)運(yùn)算:加法和減法叫做第一級(jí)運(yùn)算。 6. 第二級(jí)運(yùn)算:乘法和除法叫做第二級(jí)運(yùn)算。 五 應(yīng)用 (一)整數(shù)和小數(shù)的應(yīng)用 1 簡(jiǎn)單應(yīng)用題 (1) 簡(jiǎn)單應(yīng)用題:只含有一種基本數(shù)量關(guān)系,或用一步運(yùn)算解答的應(yīng)用題,通常叫做簡(jiǎn)單應(yīng)用題。 (2) 解題步驟: a 審題理解題意:了解應(yīng)用題的內(nèi)容,知道應(yīng)用題的條件和問(wèn)題。讀題時(shí),不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復(fù)述條件和問(wèn)題,幫助理解題意。 b選擇算法和列式計(jì)算:這是解答應(yīng)用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問(wèn)題,聯(lián)系四則運(yùn)算的含義,分析數(shù)量關(guān)系,確定算法,進(jìn)行解答并標(biāo)明正確的單位名稱。 C檢驗(yàn):就是根據(jù)應(yīng)用題的條件和問(wèn)題進(jìn)行檢查看所列算式和計(jì)算過(guò)程是否正確,是否符合題意。如果發(fā)現(xiàn)錯(cuò)誤,馬上改正。 2 復(fù)合應(yīng)用題 (1)有兩個(gè)或兩個(gè)以上的基本數(shù)量關(guān)系組成的,用兩步或兩步以上運(yùn)算解答的應(yīng)用題,通常叫做復(fù)合應(yīng)用題。 (2)含有三個(gè)已知條件的兩步計(jì)算的應(yīng)用題。 求比兩個(gè)數(shù)的和多(少)幾個(gè)數(shù)的應(yīng)用題。 比較兩數(shù)差與倍數(shù)關(guān)系的應(yīng)用題。 (3)含有兩個(gè)已知條件的兩步計(jì)算的應(yīng)用題。 已知兩數(shù)相差多少(或倍數(shù)關(guān)系)與其中一個(gè)數(shù),求兩個(gè)數(shù)的和(或差)。 已知兩數(shù)之和與其中一個(gè)數(shù),求兩個(gè)數(shù)相差多少(或倍數(shù)關(guān)系)。 (4)解答連乘連除應(yīng)用題。 (5)解答三步計(jì)算的應(yīng)用題。 (6)解答小數(shù)計(jì)算的應(yīng)用題:小數(shù)計(jì)算的加法、減法、乘法和除法的應(yīng)用題,他們的數(shù)量關(guān)系、結(jié)構(gòu)、和解題方式都與正式應(yīng)用題基本相同,只是在已知數(shù)或未知數(shù)中間含有小數(shù)。 d答案:根據(jù)計(jì)算的結(jié)果,先口答,逐步過(guò)渡到筆答。 (7) 解答加法應(yīng)用題: a求總數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。 b求比一個(gè)數(shù)多幾的數(shù)應(yīng)用題:已知甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)是多少。 (8) 解答減法應(yīng)用題: a求剩余的應(yīng)用題:從已知數(shù)中去掉一部分,求剩下的部分。 b求兩個(gè)數(shù)相差的多少的應(yīng)用題:已知甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多少,或乙數(shù)比甲數(shù)少多少。 c求比一個(gè)數(shù)少幾的數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)比甲數(shù)少多少,求乙數(shù)是多少。 (9) 解答乘法應(yīng)用題: a求相同加數(shù)和的應(yīng)用題:已知相同的加數(shù)和相同加數(shù)的個(gè)數(shù),求總數(shù)。 b求一個(gè)數(shù)的幾倍是多少的應(yīng)用題:已知一個(gè)數(shù)是多少,另一個(gè)數(shù)是它的幾倍,求另一個(gè)數(shù)是多少。 (10) 解答除法應(yīng)用題: a把一個(gè)數(shù)平均分成幾份,求每一份是多少的應(yīng)用題:已知一個(gè)數(shù)和把這個(gè)數(shù)平均分成幾份的,求每一份是多少。 b求一個(gè)數(shù)里包含幾個(gè)另一個(gè)數(shù)的應(yīng)用題:已知一個(gè)數(shù)和每份是多少,求可以分成幾份。 C 求一個(gè)數(shù)是另一個(gè)數(shù)的的幾倍的應(yīng)用題:已知甲數(shù)乙數(shù)各是多少,求較大數(shù)是較小數(shù)的幾倍。 d已知一個(gè)數(shù)的幾倍是多少,求這個(gè)數(shù)的應(yīng)用題。 (11)常見(jiàn)的數(shù)量關(guān)系:總價(jià)= 單價(jià)數(shù)量 路程= 速度時(shí)間 工作總量=工作時(shí)間工效總產(chǎn)量=單產(chǎn)量數(shù)量 3典型應(yīng)用題 具有獨(dú)特的結(jié)構(gòu)特征的和特定的解題規(guī)律的復(fù)合應(yīng)用題,通常叫做典型應(yīng)用題。 (1)平均數(shù)問(wèn)題:平均數(shù)是等分除法的發(fā)展。 解題關(guān)鍵:在于確定總數(shù)量和與之相對(duì)應(yīng)的總份數(shù)。 算術(shù)平均數(shù):已知幾個(gè)不相等的同類量和與之相對(duì)應(yīng)的份數(shù),求平均每份是多少。數(shù)量關(guān)系式:數(shù)量之和數(shù)量的個(gè)數(shù)=算術(shù)平均數(shù)。 加權(quán)平均數(shù):已知兩個(gè)以上若干份的平均數(shù),求總平均數(shù)是多少。 數(shù)量關(guān)系式 (部分平均數(shù)權(quán)數(shù))的總和(權(quán)數(shù)的和)=加權(quán)平均數(shù)。 差額平均數(shù):是把各個(gè)大于或小于標(biāo)準(zhǔn)數(shù)的部分之和被總份數(shù)均分,求的是標(biāo)準(zhǔn)數(shù)與各數(shù)相差之和的平均數(shù)。 數(shù)量關(guān)系式:(大數(shù)小數(shù))2=小數(shù)應(yīng)得數(shù) 最大數(shù)與各數(shù)之差的和總份數(shù)=最大數(shù)應(yīng)給數(shù) 最大數(shù)與個(gè)數(shù)之差的和總份數(shù)=最小數(shù)應(yīng)得數(shù)。 例:一輛汽車以每小時(shí) 100 千米 的速度從甲地開(kāi)往乙地,又以每小時(shí) 60 千米的速度從乙地開(kāi)往甲地。求這輛車的平均速度。 分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設(shè)為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為 100 ,所用的時(shí)間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時(shí)間是 ,汽車共行的時(shí)間為 + = , 汽車的平均速度為 2 =75 (千米) (2) 歸一問(wèn)題:已知相互關(guān)聯(lián)的兩個(gè)量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問(wèn)題稱之為歸一問(wèn)題。 根據(jù)求“單一量”的步驟的多少,歸一問(wèn)題可以分為一次歸一問(wèn)題,兩次歸一問(wèn)題。 根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問(wèn)題可以分為正歸一問(wèn)題,反歸一問(wèn)題。 一次歸一問(wèn)題,用一步運(yùn)算就能求出“單一量”的歸一問(wèn)題。又稱“單歸一?!?兩次歸一問(wèn)題,用兩步運(yùn)算就能求出“單一量”的歸一問(wèn)題。又稱“雙歸一?!?正歸一問(wèn)題:用等分除法求出“單一量”之后,再用乘法計(jì)算結(jié)果的歸一問(wèn)題。 反歸一問(wèn)題:用等分除法求出“單一量”之后,再用除法計(jì)算結(jié)果的歸一問(wèn)題。 解題關(guān)鍵:從已知的一組對(duì)應(yīng)量中用等分除法求出一份的數(shù)量(單一量),然后以它為標(biāo)準(zhǔn),根據(jù)題目的要求算出結(jié)果。 數(shù)量關(guān)系式:?jiǎn)我涣糠輸?shù)=總數(shù)量(正歸一) 總數(shù)量單一量=份數(shù)(反歸一) 例一個(gè)織布工人,在七月份織布 4774 米 , 照這樣計(jì)算,織布 6930 米 ,需要多少天? 分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ( 477 4 31 ) =45 (天) (3)歸總問(wèn)題:是已知單位數(shù)量和計(jì)量單位數(shù)量的個(gè)數(shù),以及不同的單位數(shù)量(或單位數(shù)量的個(gè)數(shù)),通過(guò)求總數(shù)量求得單位數(shù)量的個(gè)數(shù)(或單位數(shù)量)。 特點(diǎn):兩種相關(guān)聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過(guò)變化的規(guī)律相反,和反比例算法彼此相通。 數(shù)量關(guān)系式:?jiǎn)挝粩?shù)量單位個(gè)數(shù)另一個(gè)單位數(shù)量 = 另一個(gè)單位數(shù)量 單位數(shù)量單位個(gè)數(shù)另一個(gè)單位數(shù)量= 另一個(gè)單位數(shù)量。 例 修一條水渠,原計(jì)劃每天修 800 米 , 6 天修完。實(shí)際 4 天修完,每天修了多少米? 分析:因?yàn)橐蟪雒刻煨薜拈L(zhǎng)度,就必須先求出水渠的長(zhǎng)度。所以也把這類應(yīng)用題叫做“歸總問(wèn)題”。不同之處是“歸一”先求出單一量,再求總量,歸總問(wèn)題是先求出總量,再求單一量。 80 0 6 4=1200 (米) (4) 和差問(wèn)題:已知大小兩個(gè)數(shù)的和,以及他們的差,求這兩個(gè)數(shù)各是多少的應(yīng)用題叫做和差問(wèn)題。解題關(guān)鍵:是把大小兩個(gè)數(shù)的和轉(zhuǎn)化成兩個(gè)大數(shù)的和(或兩個(gè)小數(shù)的和),然后再求另一個(gè)數(shù)。 解題規(guī)律:(和差)2 = 大數(shù) 大數(shù)差=小數(shù)(和差)2=小數(shù) 和小數(shù)= 大數(shù)例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時(shí)從乙班調(diào) 46 人到甲班工作,這時(shí)乙班比甲班人數(shù)少 12 人,求原來(lái)甲班和乙班各有多少人? 分析:從乙班調(diào) 46 人到甲班,對(duì)于總數(shù)沒(méi)有變化,現(xiàn)在把乙數(shù)轉(zhuǎn)化成 2 個(gè)乙班,即 9 4 12 ,由此得到現(xiàn)在的乙班是( 9 4 12 ) 2=41 (人),乙班在調(diào)出 46 人之前應(yīng)該為 41+46=87 (人),甲班為 9 4 87=7 (人) (5)和倍問(wèn)題:已知兩個(gè)數(shù)的和及它們之間的倍數(shù) 關(guān)系,求兩個(gè)數(shù)各是多少的應(yīng)用題,叫做和倍問(wèn)題。 解題關(guān)鍵:找準(zhǔn)標(biāo)準(zhǔn)數(shù)(即1倍數(shù))一般說(shuō)來(lái),題中說(shuō)是“誰(shuí)”的幾倍,把誰(shuí)就確定為標(biāo)準(zhǔn)數(shù)。求出倍數(shù)和之后,再求出標(biāo)準(zhǔn)的數(shù)量是多少。根據(jù)另一個(gè)數(shù)(也可能是幾個(gè)數(shù))與標(biāo)準(zhǔn)數(shù)的倍數(shù)關(guān)系,再去求另一個(gè)數(shù)(或幾個(gè)數(shù))的數(shù)量。 解題規(guī)律:和倍數(shù)和=標(biāo)準(zhǔn)數(shù) 標(biāo)準(zhǔn)數(shù)倍數(shù)=另一個(gè)數(shù)例:汽車運(yùn)輸場(chǎng)有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運(yùn)輸場(chǎng)有大貨車和小汽車各有多少輛? 分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數(shù) 115 輛內(nèi),為了使總數(shù)與( 5+1 )倍對(duì)應(yīng),總車輛數(shù)應(yīng)( 115-7 )輛 .列式為( 115-7 )( 5+1 ) =18 (輛), 18 5+7=97 (輛) (6)差倍問(wèn)題:已知兩個(gè)數(shù)的差,及兩個(gè)數(shù)的倍數(shù)關(guān)系,求兩個(gè)數(shù)各是多少的應(yīng)用題。 解題規(guī)律:兩個(gè)數(shù)的差(倍數(shù)1 )= 標(biāo)準(zhǔn)數(shù) 標(biāo)準(zhǔn)數(shù)倍數(shù)=另一個(gè)數(shù)。 例 甲乙兩根繩子,甲繩長(zhǎng) 63 米 ,乙繩長(zhǎng) 29 米 ,兩根繩剪去同樣的長(zhǎng)度,結(jié)果甲所剩的長(zhǎng)度是乙繩 長(zhǎng)的 3 倍,甲乙兩繩所剩長(zhǎng)度各多少米? 各減去多少米? 分析:兩根繩子剪去相同的一段,長(zhǎng)度差沒(méi)變,甲繩所剩的長(zhǎng)度是乙繩的 3 倍,實(shí)比乙繩多( 3-1 )倍,以乙繩的長(zhǎng)度為標(biāo)準(zhǔn)數(shù)。列式( 63-29 )( 3-1 ) =17 (米)乙繩剩下的長(zhǎng)度, 17 3=51 (米)甲繩剩下的長(zhǎng)度, 29-17=12 (米)剪去的長(zhǎng)度。 (7)行程問(wèn)題:關(guān)于走路、行車等問(wèn)題,一般都是計(jì)算路程、時(shí)間、速度,叫做行程問(wèn)題。解答這類問(wèn)題首先要搞清楚速度、時(shí)間、路程、方向、杜速度和、速度差等概念,了解他們之間的關(guān)系,再根據(jù)這類問(wèn)題的規(guī)律解答。 解題關(guān)鍵及規(guī)律:同時(shí)同地相背而行:路程=速度和時(shí)間。 同時(shí)相向而行:相遇時(shí)間=速度和時(shí)間同時(shí)同向而行(速度慢的在前,快的在后):追及時(shí)間=路程速度差。 同時(shí)同地同向而行(速度慢的在后,快的在前):路程=速度差時(shí)間。 例 甲在乙的后面 28 千米 ,兩人同時(shí)同向而行,甲每小時(shí)行 16 千米 ,乙每小時(shí)行 9 千米 ,甲幾小時(shí)追上乙? 分析:甲每小時(shí)比乙多行( 16-9 )千米,也就是甲每小時(shí)可以追近乙( 16-9 )千米,這是速度差。 已知甲在乙的后面 28 千米 (追擊路程), 28 千米 里包含著幾個(gè)( 16-9 )千米,也就是追擊所需要的時(shí)間。列式 2 8 ( 16-9 ) =4 (小時(shí)) (8)流水問(wèn)題:一般是研究船在“流水”中航行的問(wèn)題。它是行程問(wèn)題中比較特殊的一種類型,它也是一種和差問(wèn)題。它的特點(diǎn)主要是考慮水速在逆行和順行中的不同作用。 船速:船在靜水中航行的速度。水速:水流動(dòng)的速度。 順?biāo)俣龋捍樍骱叫械乃俣取?逆水速度:船逆流航行的速度。 順?biāo)?船速水速 逆速=船速水速 解題關(guān)鍵:因?yàn)轫樍魉俣仁谴倥c水速的和,逆流速度是船速與水速的差,所以流水問(wèn)題當(dāng)作和差問(wèn)題解答。 解題時(shí)要以水流為線索。 解題規(guī)律:船行速度=(順?biāo)俣? 逆流速度)2流水速度=(順流速度逆流速度)2路程=順流速度 順流航行所需時(shí)間路程=逆流速度逆流航行所需時(shí)間例 一只輪船從甲地開(kāi)往乙地順?biāo)?,每小時(shí)行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比順?biāo)嘈?2 小時(shí),已知水速每小時(shí) 4 千米。求甲乙兩地相距多少千米? 分析:此題必須先知道順?biāo)乃俣群晚標(biāo)枰臅r(shí)間,或者逆水速度和逆水的時(shí)間。已知順?biāo)俣群退?速度,因此不難算出逆水的速度,但順?biāo)玫臅r(shí)間,逆水所用的時(shí)間不知道,只知道順?biāo)饶嫠儆?2 小時(shí),抓住這一點(diǎn),就可以就能算出順?biāo)畯募椎氐揭业氐乃玫臅r(shí)間,這樣就能算出甲乙兩地的路程。列式為 284 2=20 (千米) 2 0 2 =40 (千米) 40 ( 4 2 ) =5 (小時(shí)) 28 5=140 (千米)。 (9) 還原問(wèn)題:已知某未知數(shù),經(jīng)過(guò)一定的四則運(yùn)算后所得的結(jié)果,求這個(gè)未知數(shù)的應(yīng)用題,我們叫做還原問(wèn)題。 解題關(guān)鍵:要弄清每一步變化與未知數(shù)的關(guān)系。 解題規(guī)律:從最后結(jié)果出發(fā)采用與原題中相反的運(yùn)算(逆運(yùn)算)方法,逐步推導(dǎo)出原數(shù)。 根據(jù)原題的運(yùn)算順序列出數(shù)量關(guān)系,然后采用逆運(yùn)算的方法計(jì)算推導(dǎo)出原數(shù)。 解答還原問(wèn)題時(shí)注意觀察運(yùn)算的順序。若需要先算加減法,后算乘除法時(shí)別忘記寫括號(hào)。 例 某小學(xué)三年級(jí)四個(gè)班共有學(xué)生 168 人,如果四班調(diào) 3 人到三班,三班調(diào) 6 人到二班,二班調(diào)6人到一班,一班調(diào)2人到四班,則四個(gè)班的人數(shù)相等,四個(gè)班原有學(xué)生多少人? 分析:當(dāng)四個(gè)班人數(shù)相等時(shí),應(yīng)為 168 4 ,以四班為例,它調(diào)給三班 3 人,又從一班調(diào)入 2 人,所以四班原有的人數(shù)減去 3 再加上 2 等于平均數(shù)。四班原有人數(shù)列式為 168 4-2+3=43 (人) 一班原有人數(shù)列式為 168 4-6+2=38 (人);二班原有人數(shù)列式為 168 4-6+6=42 (人) 三班原有人數(shù)列式為 168 4-3+6=45 (人)。 (10)植樹(shù)問(wèn)題:這類應(yīng)用題是以“植樹(shù)”為內(nèi)容。凡是研究總路程、株距、段數(shù)、棵樹(shù)四種數(shù)量關(guān)系的應(yīng)用題,叫做植樹(shù)問(wèn)題。 解題關(guān)鍵:解答植樹(shù)問(wèn)題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹(shù)還是沿周長(zhǎng)植樹(shù),然后按基本公式進(jìn)行計(jì)算。 解題規(guī)律:沿線段植樹(shù)棵樹(shù)=段數(shù)+1 棵樹(shù)=總路程株距+1株距=總路程(棵樹(shù)-1) 總路程=株距(棵樹(shù)-1) 沿周長(zhǎng)植樹(shù)棵樹(shù)=總路程株距株距=總路程棵樹(shù)總路程=株距棵樹(shù)例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 .后來(lái)全部改裝,只埋了201 根。求改裝后每相鄰兩根的間距。 分析:本題是沿線段埋電線桿,要把電線桿的根數(shù)減掉一。列式為 50 ( 301-1 )( 201-1 ) =75 (米) (11 )盈虧問(wèn)題:是在等分除法的基礎(chǔ)上發(fā)展起來(lái)的。 他的特點(diǎn)是把一定數(shù)量的物品,平均分配給一定數(shù)量的人,在兩次分配中,一次有余,一次不足(或兩次都有余),或兩次都不足),已知所余和不足的數(shù)量,求物品適量和參加分配人數(shù)的問(wèn)題,叫做盈虧問(wèn)題。 解題關(guān)鍵:盈虧問(wèn)題的解法要點(diǎn)是先求兩次分配中分配者沒(méi)份所得物品數(shù)量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個(gè)差去除后一個(gè)差,就得到分配者的數(shù),進(jìn)而再求得物品數(shù)。 解題規(guī)律:總差額每人差額=人數(shù)總差額的求法可以分為以下四種情況:第一次多余,第二次不足,總差額=多余+ 不足第一次正好,第二次多余或不足 ,總差額=多余或不足第一次多余,第二次也多余,總差額=大多余-小多余第一次不足,第二次也不足, 總差額= 大不足-小不足例 參加美術(shù)小組的同學(xué),每個(gè)人分的相同的支數(shù)的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多余 5 支。求每人 分得幾支?共有多少支色鉛筆? 分析:每個(gè)同學(xué)分到的色筆相等。這個(gè)活動(dòng)小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個(gè)人多出 20 支,一個(gè)人分得 10 支。列式為( 25-5 )( 12-10 ) =10 (支) 10 12+5=125 (支)。 (12)年齡問(wèn)題:將差為一定值的兩個(gè)數(shù)作為題中的一個(gè)條件,這種應(yīng)用題被稱為“年齡問(wèn)題”。 解題關(guān)鍵:年齡問(wèn)題與和差、和倍、差倍問(wèn)題類似,主要特點(diǎn)是隨著時(shí)間的變化,年歲不斷增長(zhǎng),但大小兩個(gè)不同年齡的差是不會(huì)改變的,因此,年齡問(wèn)題是一種“差不變”的問(wèn)題,解題時(shí),要善于利用差不變的特點(diǎn)。 例 父親 48 歲,兒子 21 歲。問(wèn)幾年前父親的年齡是兒子的 4 倍? 分析:父子的年齡差為 48-21=27 (歲)。由于幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數(shù)差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21-( 48-21 )( 4-1 ) =12 (年) (13)雞兔問(wèn)題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各多少只的一類應(yīng)用題。通常稱為“雞兔問(wèn)題”又稱雞兔同籠問(wèn)題解題關(guān)鍵:解答雞兔問(wèn)題一般采用假設(shè)法,假設(shè)全是一種動(dòng)物(如全是“雞”或全是“兔”,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。 解題規(guī)律:(總腿數(shù)雞腿數(shù)總頭數(shù))一只雞兔腿數(shù)的差=兔子只數(shù)兔子只數(shù)=(總腿數(shù)-2總頭數(shù))2如果假設(shè)全是兔子,可以有下面的式子:雞的只數(shù)=(4總頭數(shù)-總腿數(shù))2兔的頭數(shù)=總頭數(shù)-雞的只數(shù)例 雞兔同籠共 50 個(gè)頭, 170 條腿。問(wèn)雞兔各有多少只? 兔子只數(shù) ( 170-2 50 ) 2 =35(只) 雞的只數(shù) 50-35=15 (只) (二)分?jǐn)?shù)和百分?jǐn)?shù)的應(yīng)用 1 分?jǐn)?shù)加減法應(yīng)用題:分?jǐn)?shù)加減法的應(yīng)用題與整數(shù)加減法的應(yīng)用題的結(jié)構(gòu)、數(shù)量關(guān)系和解題方法
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)設(shè)計(jì)與智能制造技術(shù)融合應(yīng)用
- 工業(yè)設(shè)計(jì)與制造技術(shù)的創(chuàng)新融合
- 工作中的心理疲勞與對(duì)策研究
- 工作中的數(shù)據(jù)分析軟件使用指南
- 工業(yè)設(shè)計(jì)的美學(xué)與實(shí) 用性探討
- 工作中的法律風(fēng)險(xiǎn)防范與應(yīng)對(duì)
- 工作流程標(biāo)準(zhǔn)化與管理提升
- 工作與生活平衡的企業(yè)政策實(shí)踐
- 工程塑料模架設(shè)計(jì)與優(yōu)化
- 工作匯報(bào)的邏輯框架
- 福建省南平市2023-2024學(xué)年八年級(jí)下學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 集控運(yùn)行崗面試題及答案
- 河道疏浚對(duì)漁業(yè)發(fā)展的影響與對(duì)策
- 2024年11月傳播學(xué)教程試題庫(kù)(附答案解析)
- 2025年中考數(shù)學(xué):初中八年級(jí)下冊(cè)第X單元:代數(shù)綜合測(cè)試試卷
- 白酒酒店合作合同協(xié)議書
- T/CIE 209-2024兒童實(shí)物編程教育評(píng)價(jià)指南
- 中國(guó)融通農(nóng)業(yè)發(fā)展有限集團(tuán)有限公司招聘筆試題庫(kù)2025
- 塑料包裝制品項(xiàng)目投資計(jì)劃書
- 慢性活動(dòng)性EB病毒病診治專家共識(shí)(2025版)解讀
- 2025年入團(tuán)考試常見(jiàn)問(wèn)題及試題答案
評(píng)論
0/150
提交評(píng)論