【四維備課】高中數(shù)學(xué) 2.2.2第2課時(shí)對(duì)數(shù)函數(shù)的性質(zhì)及應(yīng)用備課資料素材庫(kù) 新人教A版必修1.doc_第1頁(yè)
【四維備課】高中數(shù)學(xué) 2.2.2第2課時(shí)對(duì)數(shù)函數(shù)的性質(zhì)及應(yīng)用備課資料素材庫(kù) 新人教A版必修1.doc_第2頁(yè)
【四維備課】高中數(shù)學(xué) 2.2.2第2課時(shí)對(duì)數(shù)函數(shù)的性質(zhì)及應(yīng)用備課資料素材庫(kù) 新人教A版必修1.doc_第3頁(yè)
【四維備課】高中數(shù)學(xué) 2.2.2第2課時(shí)對(duì)數(shù)函數(shù)的性質(zhì)及應(yīng)用備課資料素材庫(kù) 新人教A版必修1.doc_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第2課時(shí)對(duì)數(shù)函數(shù)的性質(zhì)及應(yīng)用其他版本的例題與習(xí)題(蘇教版)對(duì)于任意的x1,x2(0,+),若函數(shù)f(x)=lg x,試比較fx1+fx22與fx1+x22的大小.解: x1,x2(0,+),f(x)=lg x, fx1+fx22=lgx1+lgx22=lgx1x22=lg x1x2,fx1+x22=lgx1+x22, fx1+fx22-fx1+x22=lg x1x2-lgx1+x22=lg2 x1x2x1+x2. x1+x2-2 x1x2=( x1- x2 )2 0, x1+x22 x1x2, 01時(shí),若logax0,則x1,若logax0,則0x1;當(dāng)0a0,則0x1,若logax1.二、數(shù)形結(jié)合法例2若x滿足log2x=3-x,則x滿足區(qū)間( )a.(0,1)b.(1,2)c.(1,3)d.(3,4)思路分析:本題可通過作圖象求解.解析:在同一直角坐標(biāo)系中畫出函數(shù)y=log2x與y=3-x的圖象,如圖所示,觀察可得兩圖象交點(diǎn)的橫坐標(biāo)滿足1x3,答案選c. 答案:c點(diǎn)評(píng):解決該類問題的關(guān)鍵是將方程的根轉(zhuǎn)化為兩個(gè)函數(shù)圖象交點(diǎn)的橫坐標(biāo),并正確作出函數(shù)的圖象,從而觀察交點(diǎn)的橫坐標(biāo)的取值范圍.三、特殊值法例3已知y=loga2-ax在0,1上為x的減函數(shù),則a的取值范圍為( )a.(0,1)b.(1,2)c.(0,2)d.2,+)思路分析:由函數(shù)的單調(diào)性求底數(shù)a的取值范圍,逆向考查,難度較大,可采用特殊值法進(jìn)行判斷.解析:取特殊值a=0.5,x1=0,x2=1,則有l(wèi)oga2-ax1=log0.52,loga2-ax2=log0.532,與y是x的減函數(shù)矛盾,故排除a和c;取特殊值a=3,x=1,則2-ax=2-30,所以a3,故排除d.答案:b點(diǎn)評(píng):本題由常規(guī)的具體函數(shù)判斷其單調(diào)性,變換為已知函數(shù)的單調(diào)性反過來確定函數(shù)中底數(shù)a的取值范圍,提高了思維層次,合理利用特值法是解決此類問題的捷徑.四、換元法例4若2x8,求函數(shù)y=log14x2+log14x2+5的值域.思路分析:通過對(duì)函數(shù)式進(jìn)行變形知該題是一個(gè)二次函數(shù)求值域問題,可換元進(jìn)行求解.解:設(shè)t=log14x, 2x8, log148tlog142,即-32t-12.又y=log14x2+log14x2+5=log14x2+2log14x+5, y=t2+2t+5=t+12+4. -32t-12, 當(dāng)t=-1時(shí),y的最小值為4;當(dāng)t=-32或t=-12時(shí),y值相等且為最大值174.故該函數(shù)的值域?yàn)?&4,174 .點(diǎn)評(píng):換元法是一種常見的數(shù)學(xué)思想,也是一種常用的解題技巧,希望同學(xué)們?cè)诮窈蟮膶W(xué)習(xí)中合理轉(zhuǎn)化,靈活運(yùn)用.對(duì)數(shù)函數(shù)性質(zhì)的四個(gè)應(yīng)用應(yīng)用1 對(duì)數(shù)函數(shù)的定義域、值域例1求函數(shù)y= log125x-3的定義域.解:由題意,得log125x-30,結(jié)合對(duì)數(shù)函數(shù)的圖象與性質(zhì),得05x-31,解得35x45,所以函數(shù)y= log125x-3的定義域?yàn)?&x &350且a1”時(shí),就要注意對(duì)底數(shù)進(jìn)行分類討論.例2若fx=ax+logax+1在0,1上的最大值與最小值之和為a,則a的值是( )a.14 b.12 c.2 d.4解析:(1)當(dāng)a1時(shí),fxmax=f1=a+loga2,fxmin=f0=a0+loga1=1,所以a+loga2+1=a,所以a=12,不合題意,舍去;(2)當(dāng)0a1和0a0且a1)可知,對(duì)數(shù)函數(shù)的圖象經(jīng)過定點(diǎn)(1,0).例3若函數(shù)y=loga2x+1x-1(a0且a1)的圖象過定點(diǎn)p,則點(diǎn)p的坐標(biāo)為 .解析:當(dāng)2x+1x-1=1,即x=-2時(shí),y=0,故點(diǎn)p的坐標(biāo)為(-2,0).答案:(-2,0)點(diǎn)評(píng):對(duì)復(fù)合函數(shù)y=loga2x+1x-1(a0且a1),內(nèi)層函數(shù)u=2x+1x-1就是外層函數(shù)y=logau的自變量,因?yàn)橥鈱雍瘮?shù)的圖象過定點(diǎn)(1,0),所以令u=1,得x的值,從而得復(fù)合函數(shù)經(jīng)過的定點(diǎn).應(yīng)用4 對(duì)數(shù)函數(shù)的同正異負(fù)在對(duì)數(shù)函數(shù)y=logax(a0且a1)中,(1)若0a1且0x1且x1,則有y0;(2)若0a1,或a1且0x1,則有y0且a12 滿足f(x)0,則實(shí)數(shù)a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論