已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
知識(shí)網(wǎng)絡(luò) 本章歸納整合 本章涉及的概念比較多 要真正理解它們的實(shí)質(zhì) 搞清它們的區(qū)別與聯(lián)系 了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性 要進(jìn)一步了解概率的意義以及頻率與概率的區(qū)別 要點(diǎn)歸納 1 2 3 對(duì)于幾何概型事件概率的計(jì)算 關(guān)鍵是求得事件a所占區(qū)域和整個(gè)區(qū)域的幾何度量 然后代入公式求解 學(xué)習(xí)本章的過程中 要重視教材的基礎(chǔ)作用 重視過程的學(xué)習(xí) 重視基本數(shù)學(xué)思想和數(shù)學(xué)方法的形成和發(fā)展 注意培養(yǎng)分析問題和解決問題的能力 4 5 專題一概率與頻率 根據(jù)概率的統(tǒng)計(jì)定義 我們可以由頻率來估計(jì)概率 因此應(yīng)理清頻率與概率的關(guān)系 頻率是概率的近似值 是隨機(jī)的 隨著試驗(yàn)的不同而變化 而概率是多數(shù)次的試驗(yàn)中頻率的穩(wěn)定值 是一個(gè)常數(shù) 不要用一次或少數(shù)次試驗(yàn)中的頻率來估計(jì)概率 下表是某種油菜子在相同條件下的發(fā)芽試驗(yàn)結(jié)果表 請(qǐng)完成表格并回答以下問題 例1 1 完成上面表格 2 估計(jì)該油菜子發(fā)芽的概率約是多少 專題二古典概型 某人一次同時(shí)拋出兩枚均勻骰子 它們的六個(gè)面分別標(biāo)有點(diǎn)數(shù)1 2 3 4 5 6 1 求兩枚骰子點(diǎn)數(shù)相同的概率 2 求兩枚骰子點(diǎn)數(shù)之和為5的倍數(shù)的概率 解用 x y 表示同時(shí)拋出的兩枚均勻骰子中一枚骰子向上的點(diǎn)數(shù)是x 另一枚骰子向上的點(diǎn)數(shù)是y 則全部結(jié)果有 1 1 1 2 1 3 1 4 1 5 1 6 2 1 2 2 2 3 2 4 2 5 2 6 3 1 3 2 3 3 3 4 3 5 3 6 4 1 4 2 4 3 4 4 4 5 4 6 5 1 5 2 5 3 5 4 5 5 5 6 6 1 6 2 6 3 6 4 6 5 6 6 即同時(shí)拋出兩枚均勻骰子共有36種結(jié)果 則同時(shí)拋出兩枚均勻骰子的結(jié)果是有限個(gè) 屬于古典概型 例2 2010 天津高考 有編號(hào)為a1 a2 a10的10個(gè)零件 測(cè)量其直徑 單位 cm 得到下面數(shù)據(jù) 例3 其中直徑在區(qū)間 1 48 1 52 內(nèi)的零件為一等品 1 從上述10個(gè)零件中 隨機(jī)抽取1個(gè) 求這個(gè)零件為一等品的概率 2 從一等品零件中 隨機(jī)抽取2個(gè) 用零件的編號(hào)列出所有可能的抽取結(jié)果 求這2個(gè)零件直徑相等的概率 互斥事件的概率加法公式是解決概率問題的重要公式 它能把復(fù)雜概率問題轉(zhuǎn)化成較簡(jiǎn)單的基本事件的概率問題去解決或轉(zhuǎn)化成求對(duì)立事件的概率問題 應(yīng)用公式時(shí)一定要注意 首先確定各個(gè)事件是否彼此互斥 然后求出各事件分別發(fā)生的概率 專題三概率的加法公式 現(xiàn)有8名2010廣州亞運(yùn)會(huì)志愿者 其中志愿者a1 a2 a3通曉日語 b1 b2 b3通曉俄語 c1 c2通曉韓語 從中選出通曉日語 俄語和韓語的志愿者各1名 組成一個(gè)小組 1 求a1被選中的概率 2 求b1和c1不全被選中的概率 解 1 從8人中選出日語 俄語和韓語的志愿者各1名 其一切可能的結(jié)果組成的基本事件空間 a1 b1 c1 a1 b1 c2 a1 b2 c1 a1 b2 c2 a1 b3 c1 a1 b3 c2 a2 b1 c1 a2 b1 c2 a2 b2 c1 a2 b2 c2 a2 b3 c1 a2 b3 c2 a3 b1 c1 a3 b1 c2 a3 b2 c1 a3 b2 c2 a3 b3 c1 a3 b3 c2 即由18個(gè)基本事件組成 由于每一個(gè)基本事件被抽取的機(jī)會(huì)均等 因此這些基本事件的發(fā)生是等可能的 例4 幾何概型同古典概型一樣 是概率中最具有代表性的試驗(yàn)概型之一 在高考命題中占有非常重要的位置 我們要理解并掌握幾何概型試驗(yàn)的兩個(gè)基本特征 即 每次試驗(yàn)中基本事件的無限性和每個(gè)事件發(fā)生的等可能性 并能求簡(jiǎn)單的幾何概型試驗(yàn)的概率 專題四幾何概型 例5 統(tǒng)計(jì)和古典概型的綜合是高考解答題的一個(gè)命題趨勢(shì)和熱點(diǎn) 此類題很好地結(jié)合了統(tǒng)計(jì)與概率的相關(guān)知識(shí) 并且在實(shí)際生活中應(yīng)用也十分廣泛 能很好地考查學(xué)生的綜合解題能力 在解決綜合問題時(shí) 要求同學(xué)們對(duì)圖表進(jìn)行觀察 分析 提煉 挖掘出圖表所給予的有用信息 排除有關(guān)數(shù)據(jù)的干擾 進(jìn)而抓住問題的實(shí)質(zhì) 達(dá)到求解的目的 專題五概率與統(tǒng)計(jì)的綜合問題 隨機(jī)抽取某中學(xué)甲 乙兩班各10名同學(xué) 測(cè)量他們的身高 單位 cm 獲得身高數(shù)據(jù)的莖葉圖如圖所示 例6 1 根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高 2 計(jì)算甲班的樣本方差 3 現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué) 求身高為176cm的同學(xué)被抽中的概率 數(shù)形結(jié)合思想在本章的應(yīng)用很廣泛 如用集合的關(guān)系與運(yùn)算表示事件的關(guān)系與運(yùn)算 用圖表的形式表示一次試驗(yàn)的基本事件以及幾何概型中畫圖表示問題中涉及的量 從而求出事件的概率 專題六數(shù)形結(jié)合思想 設(shè)m 1 2 3 4 5 6 7 8 9 10 任取x y m x y 求x y是3的倍數(shù)的概率 解利用平面直角坐標(biāo)系列舉 如圖所示 例7 近三年的高考數(shù)學(xué)試題對(duì)本章的考查主要是以生活中的概率問題為背景考查隨機(jī)事件的概率 重點(diǎn)考查古典概型與幾何概型兩種概率模型概率
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電梯課程設(shè)計(jì)范文
- 舞蹈機(jī)構(gòu)結(jié)業(yè)課程設(shè)計(jì)
- 統(tǒng)編版七年級(jí)語文上冊(cè)《5 秋天的懷念》-教學(xué)設(shè)計(jì)
- 游戲行業(yè)銷售人員工作總結(jié)
- 自閉癥科護(hù)士工作總結(jié)
- 2024年研學(xué)旅行指導(dǎo)師考試題庫(含答案)
- 2023-2024學(xué)年遼寧省大連二十四中高一(下)期中語文試卷
- 美發(fā)沙龍營業(yè)員技巧總結(jié)
- 2024年認(rèn)識(shí)星期教案
- 農(nóng)村安裝雨棚材料合同(2篇)
- 教育部校企合作辦法
- “技能興威”第一屆威海市職業(yè)技能大賽農(nóng)產(chǎn)品食品檢驗(yàn)員(海洋食品產(chǎn)業(yè)鏈)賽項(xiàng)規(guī)程
- 幼兒園故事繪本《賣火柴的小女孩兒》課件
- 中央2024年國家藥品監(jiān)督管理局中國食品藥品檢定研究院招聘筆試歷年典型考題及考點(diǎn)附答案解析
- 小學(xué)語文四年級(jí)上冊(cè)單元作業(yè)整體設(shè)計(jì)案例
- DB32-T 4752-2024 一體化污水處理設(shè)備通.用技術(shù)要求
- 2024年新高考Ⅰ卷作文審題立意及寫作指導(dǎo)+課件
- 2024年山東臨沂市恒源熱力集團(tuán)限公司高校畢業(yè)生招聘9人重點(diǎn)基礎(chǔ)提升難、易點(diǎn)模擬試題(共500題)附帶答案詳解
- 2024年房屋頂賬協(xié)議模板(二篇)
- 美國史智慧樹知到期末考試答案章節(jié)答案2024年東北師范大學(xué)
- 售后服務(wù)方案及運(yùn)維方案
評(píng)論
0/150
提交評(píng)論