初中幾何輔助線做法大全.doc_第1頁
初中幾何輔助線做法大全.doc_第2頁
初中幾何輔助線做法大全.doc_第3頁
初中幾何輔助線做法大全.doc_第4頁
初中幾何輔助線做法大全.doc_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)習(xí)資料收集于網(wǎng)絡(luò),僅供參考 線、角、相交線、平行線規(guī)律1.如果平面上有n(n2)個點,其中任何三點都不在同一直線上,那么每兩點畫一條直線,一共可以畫出n(n1)條.規(guī)律2.平面上的n條直線最多可把平面分成n(n+1)+1個部分.規(guī)律3.如果一條直線上有n個點,那么在這個圖形中共有線段的條數(shù)為n(n1)條.規(guī)律4.線段(或延長線)上任一點分線段為兩段,這兩條線段的中點的距離等于線段長的一半.例:如圖,B在線段AC上,M是AB的中點,N是BC的中點.求證:MN =AC證明:M是AB的中點,N是BC的中點AM = BM = AB ,BN = CN = BCMN = MB+BN = AB + BC = (AB + BC)MN =AC練習(xí):1.如圖,點C是線段AB上的一點,M是線段BC的中點.求證:AM = (AB + BC) 2.如圖,點B在線段AC上,M是AB的中點,N是AC的中點.求證:MN = BC 3.如圖,點B在線段AC上,N是AC的中點,M是BC的中點.求證:MN = AB 規(guī)律5.有公共端點的n條射線所構(gòu)成的交點的個數(shù)一共有n(n1)個.規(guī)律6.如果平面內(nèi)有n條直線都經(jīng)過同一點,則可構(gòu)成小于平角的角共有2n(n1)個.規(guī)律7. 如果平面內(nèi)有n條直線都經(jīng)過同一點,則可構(gòu)成n(n1)對對頂角.規(guī)律8.平面上若有n(n3)個點,任意三個點不在同一直線上,過任意三點作三角形一共可作出n(n1)(n2)個.規(guī)律9.互為鄰補角的兩個角平分線所成的角的度數(shù)為90o.規(guī)律10.平面上有n條直線相交,最多交點的個數(shù)為n(n1)個.規(guī)律11.互為補角中較小角的余角等于這兩個互為補角的角的差的一半.規(guī)律12.當(dāng)兩直線平行時,同位角的角平分線互相平行,內(nèi)錯角的角平分線互相平行,同旁內(nèi)角的角平分線互相垂直.例:如圖,以下三種情況請同學(xué)們自己證明.規(guī)律13.已知ABDE,如圖,規(guī)律如下:規(guī)律14.成“8”字形的兩個三角形的一對內(nèi)角平分線相交所成的角等于另兩個內(nèi)角和的一半.例:已知,BE、DE分別平分ABC和ADC,若A = 45o,C = 55o,求E的度數(shù).解:AABE =EADE CCDE =ECBE 得AABECCDE =EADEECBEBE平分ABC、DE平分ADC,ABE =CBE,CDE =ADE2E =ACE = (AC)A =45o,C =55o,E =50o 三角形部分規(guī)律15在利用三角形三邊關(guān)系證明線段不等關(guān)系時,如果直接證不出來,可連結(jié)兩點或延長某邊構(gòu)造三角形,使結(jié)論中出現(xiàn)的線段在一個或幾個三角形中,再利用三邊關(guān)系定理及不等式性質(zhì)證題.例:如圖,已知D、E為ABC內(nèi)兩點,求證:ABACBDDECE. 證法(一):將DE向兩邊延長,分別交AB、AC于M、N 在AMN中, AM ANMDDENE 在BDM中,MBMDBD 在CEN中,CNNECE 得AMANMBMDCNNEMDDENEBDCEABACBDDECE證法(二)延長BD交AC于F,延長CE交BF于G,在ABF和GFC和GDE中有,ABAFBDDGGFGFFCGECEDGGEDE有ABAFGFFCDGGEBDDGGFGECEDEABACBDDECE注意:利用三角形三邊關(guān)系定理及推論證題時,常通過引輔助線,把求證的量(或與求證有關(guān)的量)移到同一個或幾個三角形中去然后再證題.練習(xí):已知:如圖P為ABC內(nèi)任一點, 求證:(ABBCAC)PAPBPCABBCAC規(guī)律16三角形的一個內(nèi)角平分線與一個外角平分線相交所成的銳角,等于第三個內(nèi)角的一半.例:如圖,已知BD為ABC的角平分線,CD為ABC 的外角ACE的平分線,它與BD的延長線交于D.求證:A = 2D證明:BD、CD分別是ABC、ACE的平分線 ACE =21, ABC =22A = ACE ABCA = 2122又D =12A =2D規(guī)律17. 三角形的兩個內(nèi)角平分線相交所成的鈍角等于90o加上第三個內(nèi)角的一半.例:如圖,BD、CD分別平分ABC、ACB, 求證:BDC = 90oA證明:BD、CD分別平分ABC、ACB A2122 = 180o 2(12)= 180oA BDC = 180o(12) (12) = 180oBDC 把式代入式得 2(180oBDC)= 180oA 即:360o2BDC =180oA 2BDC = 180oA BDC = 90oA規(guī)律18. 三角形的兩個外角平分線相交所成的銳角等于90o減去第三個內(nèi)角的一半.例:如圖,BD、CD分別平分EBC、FCB, 求證:BDC = 90oA證明:BD、CD分別平分EBC、FCBEBC = 21、FCB = 2221 =AACB 22 =AABC 得2(12)= AABCACBA2(12)= 180oA(12)= 90oABDC = 180o(12)BDC = 180o(90oA)BDC = 90oA規(guī)律19. 從三角形的一個頂點作高線和角平分線,它們所夾的角等于三角形另外兩個角差(的絕對值)的一半.例:已知,如圖,在ABC中,CB, ADBC于D, AE平分BAC.求證:EAD = (CB)證明:AE平分BACBAE =CAE =BACBAC =180o(BC)EAC = 180o(BC)ADBCDAC = 90o CEAD = EACDACEAD = 180o(BC)(90oC) = 90o(BC)90oC = (CB)如果把AD平移可以得到如下兩圖,F(xiàn)DBC其它條件不變,結(jié)論為EFD = (CB).注意:同學(xué)們在學(xué)習(xí)幾何時,可以把自己證完的題進(jìn)行適當(dāng)變換,從而使自己通過解一道題掌握一類題,提高自己舉一反三、靈活應(yīng)變的能力.規(guī)律20.在利用三角形的外角大于任何和它不相鄰的內(nèi)角證明角的不等關(guān)系時,如果直接證不出來,可連結(jié)兩點或延長某邊,構(gòu)造三角形,使求證的大角在某個三角形外角的位置上,小角處在內(nèi)角的位置上,再利用外角定理證題.例:已知D為ABC內(nèi)任一點,求證:BDCBAC證法(一):延長BD交AC于E,BDC是EDC 的外角,BDCDEC同理:DECBACBDCBAC證法(二):連結(jié)AD,并延長交BC于FBDF是ABD的外角,BDFBAD同理CDFCADBDFCDFBADCAD即:BDCBAC規(guī)律21.有角平分線時常在角兩邊截取相等的線段,構(gòu)造全等三角形. 例:已知,如圖,AD為ABC的中線且1 = 2,3 = 4,求證:BECFEF證明:在DA上截取DN = DB,連結(jié)NE、NF,則DN = DC 在BDE和NDE中,DN = DB1 = 2ED = EDBDENDEBE = NE同理可證:CF = NF在EFN中,ENFNEFBECFEF規(guī)律22. 有以線段中點為端點的線段時,常加倍延長此線段構(gòu)造全等三角形.例:已知,如圖,AD為ABC的中線,且1 = 2,3 = 4,求證:BECFEF證明:延長ED到M,使DM = DE,連結(jié)CM、FMBDE和CDM中, BD = CD1 = 5ED = MDBDECDMCM = BE又1 = 2,3 = 4 123 4 = 180o3 2 = 90o即EDF = 90oFDM = EDF = 90oEDF和MDF中ED = MDFDM = EDFDF = DFEDFMDFEF = MF在CMF中,CFCM MFBECFEF(此題也可加倍FD,證法同上)規(guī)律23. 在三角形中有中線時,常加倍延長中線構(gòu)造全等三角形.例:已知,如圖,AD為ABC的中線,求證:ABAC2AD證明:延長AD至E,使DE = AD,連結(jié)BEAD為ABC的中線BD = CD在ACD和EBD中BD = CD 1 = 2AD = EDACDEBDABE中有ABBEAEABAC2AD規(guī)律24.截長補短作輔助線的方法截長法:在較長的線段上截取一條線段等于較短線段;補短法:延長較短線段和較長線段相等.這兩種方法統(tǒng)稱截長補短法.當(dāng)已知或求證中涉及到線段a、b、c、d有下列情況之一時用此種方法:abab = cab = cd例:已知,如圖,在ABC中,ABAC,1 = 2,P為AD上任一點,求證:ABACPBPC證明:截長法:在AB上截取AN = AC,連結(jié)PN在APN和APC中,AN = AC1 = 2AP = APAPNAPCPC = PNBPN中有PBPCBNPBPCABAC補短法:延長AC至M,使AM = AB,連結(jié)PM在ABP和AMP中AB = AM 1 = 2AP = APABPAMPPB = PM又在PCM中有CM PMPCABACPBPC練習(xí):1.已知,在ABC中,B = 60o,AD、CE是ABC的角平分線,并且它們交于點O求證:AC = AECD2.已知,如圖,ABCD1 = 2 ,3 = 4. 求證:BC = ABCD 規(guī)律25.證明兩條線段相等的步驟:觀察要證線段在哪兩個可能全等的三角形中,然后證這兩個三角形全等。若圖中沒有全等三角形,可以把求證線段用和它相等的線段代換,再證它們所在的三角形全等.如果沒有相等的線段代換,可設(shè)法作輔助線構(gòu)造全等三角形.例:如圖,已知,BE、CD相交于F,B = C,1 = 2,求證:DF = EF 證明:ADF =B3 AEF = C4又3 = 4B = CADF = AEF在ADF和AEF中ADF = AEF1 = 2 AF = AFADFAEFDF = EF規(guī)律26.在一個圖形中,有多個垂直關(guān)系時,常用同角(等角)的余角相等來證明兩個角相等.例:已知,如圖RtABC中,AB = AC,BAC = 90o,過A作任一條直線AN,作BDAN于D,CEAN于E,求證:DE = BDCE證明:BAC = 90o, BDAN12 = 90o 13 = 90o2 = 3BDAN CEANBDA =AEC = 90o在ABD和CAE中,BDA =AEC2 = 3AB = ACABDCAEBD = AE且AD = CEAEAD = BDCEDE = BDCE規(guī)律27.三角形一邊的兩端點到這邊的中線所在的直線的距離相等.例:AD為ABC的中線,且CFAD于F,BEAD的延長線于E求證:BE = CF 證明:(略)規(guī)律28.條件不足時延長已知邊構(gòu)造三角形.例:已知AC = BD,ADAC于A,BCBD于B求證:AD = BC證明:分別延長DA、CB交于點EADAC BCBDCAE = DBE = 90o在DBE和CAE中DBE =CAEBD = ACE =EDBECAEED = EC,EB = EAEDEA = EC EBAD = BC規(guī)律29.連接四邊形的對角線,把四邊形問題轉(zhuǎn)化成三角形來解決問題.例:已知,如圖,ABCD,ADBC 求證:AB = CD 證明:連結(jié)AC(或BD)ABCD,ADBC1 = 2 在ABC和CDA中,1 = 2 AC = CA3 = 4 ABCCDAAB = CD練習(xí):已知,如圖,AB = DC,AD = BC,DE = BF,求證:BE = DF規(guī)律30.有和角平分線垂直的線段時,通常把這條線段延長。可歸結(jié)為“角分垂等腰歸”.例:已知,如圖,在RtABC中,AB = AC,BAC = 90o,1 = 2 ,CEBD的延長線于E求證:BD = 2CE證明:分別延長BA、CE交于FBECFBEF =BEC = 90o在BEF和BEC中1 = 2 BE = BEBEF =BECBEFBECCE = FE =CFBAC = 90o , BECFBAC = CAF = 90o 1BDA = 90o1BFC = 90oBDA = BFC在ABD和ACF中BAC = CAFBDA = BFCAB = ACABDACFBD = CFBD = 2CE練習(xí):已知,如圖,ACB = 3B,1 =2,CDAD于D,求證:ABAC = 2CD規(guī)律31.當(dāng)證題有困難時,可結(jié)合已知條件,把圖形中的某兩點連接起來構(gòu)造全等三角形.例:已知,如圖,AC、BD相交于O,且AB = DC,AC = BD,求證:A = D證明:(連結(jié)BC,過程略)規(guī)律32.當(dāng)證題缺少線段相等的條件時,可取某條線段中點,為證題提供條件.例:已知,如圖,AB = DC,A = D 求證:ABC = DCB 證明:分別取AD、BC中點N、M,連結(jié)NB、NM、NC(過程略)規(guī)律33.有角平分線時,常過角平分線上的點向角兩邊做垂線,利用角平分線上的點到角兩邊距離相等證題.例:已知,如圖,1 = 2 ,P為BN上一點,且PDBC于D,ABBC = 2BD,求證:BAPBCP = 180o證明:過P作PEBA于EPDBC,1 = 2 PE = PD在RtBPE和RtBPD中BP = BPPE = PDRtBPERtBPDBE = BDABBC = 2BD,BC = CDBD,AB = BEAEAE = CDPEBE,PDBCPEB =PDC = 90o在PEA和PDC中PE = PDPEB =PDCAE =CDPEAPDCPCB = EAPBAPEAP = 180oBAPBCP = 180o練習(xí):1.已知,如圖,PA、PC分別是ABC外角MAC與NCA的平分線,它們交于P,PDBM于M,PFBN于F,求證:BP為MBN的平分線2. 已知,如圖,在ABC中,ABC =100o,ACB = 20o,CE是ACB的平分線,D是AC上一點,若CBD = 20o,求CED的度數(shù)。規(guī)律34.有等腰三角形時常用的輔助線作頂角的平分線,底邊中線,底邊高線例:已知,如圖,AB = AC,BDAC于D,求證:BAC = 2DBC證明:(方法一)作BAC的平分線AE,交BC于E,則1 = 2 = BAC又AB = ACAEBC2ACB = 90oBDACDBCACB = 90o2 = DBCBAC = 2DBC(方法二)過A作AEBC于E(過程略)(方法三)取BC中點E,連結(jié)AE(過程略)有底邊中點時,常作底邊中線例:已知,如圖,ABC中,AB = AC,D為BC中點,DEAB于E,DFAC于F,求證:DE = DF證明:連結(jié)AD.D為BC中點,BD = CD又AB =ACAD平分BACDEAB,DFACDE = DF將腰延長一倍,構(gòu)造直角三角形解題例:已知,如圖,ABC中,AB = AC,在BA延長線和AC上各取一點E、F,使AE = AF,求證:EFBC證明:延長BE到N,使AN = AB,連結(jié)CN,則AB = AN = ACB = ACB, ACN = ANCBACBACNANC = 180o2BCA2ACN = 180oBCAACN = 90o即BCN = 90oNCBCAE = AFAEF = AFE又BAC = AEF AFEBAC = ACN ANCBAC =2AEF = 2ANCAEF = ANCEFNCEFBC常過一腰上的某一已知點做另一腰的平行線例:已知,如圖,在ABC中,AB = AC,D在AB上,E在AC延長線上,且BD = CE,連結(jié)DE交BC于F求證:DF = EF證明:(證法一)過D作DNAE,交BC于N,則DNB = ACB,NDE = E,AB = AC,B = ACBB =DNBBD = DN又BD = CE DN = EC在DNF和ECF中1 = 2NDF =EDN = EC DNFECFDF = EF(證法二)過E作EMAB交BC延長線于M,則EMB =B(過程略)常過一腰上的某一已知點做底的平行線例:已知,如圖,ABC中,AB =AC,E在AC上,D在BA延長線上,且AD = AE,連結(jié)DE求證:DEBC證明:(證法一)過點E作EFBC交AB于F,則AFE =BAEF =CAB = ACB =CAFE =AEFAD = AEAED =ADE又AFEAEFAEDADE = 180o2AEF2AED = 90o 即FED = 90o DEFE又EFBCDEBC(證法二)過點D作DNBC交CA的延長線于N,(過程略)(證法三)過點A作AMBC交DE于M,(過程略)常將等腰三角形轉(zhuǎn)化成特殊的等腰三角形-等邊三角形例:已知,如圖,ABC中,AB = AC,BAC = 80o ,P為形內(nèi)一點,若PBC = 10o PCB = 30o 求PAB的度數(shù).解法一:以AB為一邊作等邊三角形,連結(jié)CE則BAE =ABE = 60oAE = AB = BEAB = ACAE = AC ABC =ACBAEC =ACEEAC =BACBAE = 80o 60o = 20oACE = (180oEAC)= 80oACB= (180oBAC)= 50oBCE =ACEACB = 80o50o = 30oPCB = 30oPCB = BCEABC =ACB = 50o, ABE = 60oEBC =ABEABC = 60o50o =10oPBC = 10oPBC = EBC在PBC和EBC中PBC = EBCBC = BCPCB = BCEPBCEBCBP = BEAB = BEAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP)= 70o解法二:以AC為一邊作等邊三角形,證法同一。解法三:以BC為一邊作等邊三角形BCE,連結(jié)AE,則EB = EC = BC,BEC =EBC = 60oEB = ECE在BC的中垂線上同理A在BC的中垂線上EA所在的直線是BC的中垂線EABCAEB = BEC = 30o =PCB由解法一知:ABC = 50oABE = EBCABC = 10o =PBCABE =PBC,BE = BC,AEB =PCBABEPBCAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP) = (180o40o)= 70o規(guī)律35.有二倍角時常用的輔助線構(gòu)造等腰三角形使二倍角是等腰三角形的頂角的外角例:已知,如圖,在ABC中,1 = 2,ABC = 2C,求證:ABBD = AC證明:延長AB到E,使BE = BD,連結(jié)DE則BED = BDEABD =EBDEABC =2EABC = 2CE = C 在AED和ACD中E = C1 = 2AD = ADAEDACDAC = AEAE = ABBEAC = ABBE即ABBD = AC平分二倍角例:已知,如圖,在ABC中,BDAC于D,BAC = 2DBC求證:ABC = ACB證明:作BAC的平分線AE交BC于E,則BAE = CAE = DBCBDACCBD C = 90oCAEC= 90o AEC= 180oCAEC= 90oAEBCABCBAE = 90oCAEC= 90oBAE = CAEABC = ACB加倍小角例:已知,如圖,在ABC中,BDAC于D,BAC = 2DBC求證:ABC = ACB證明:作FBD =DBC,BF交AC于F(過程略)規(guī)律36.有垂直平分線時常把垂直平分線上的點與線段兩端點連結(jié)起來.例:已知,如圖,ABC中,AB = AC,BAC = 120o,EF為AB的垂直平分線,EF交BC于F,交AB于E求證:BF =FC證明:連結(jié)AF,則AF = BFB =FABAB = ACB =CBAC = 120oB =CBAC =(180oBAC) = 30oFAB = 30oFAC =BACFAB = 120o30o =90o又C = 30oAF = FCBF =FC練習(xí):已知,如圖,在ABC中,CAB的平分線AD與BC的垂直平分線DE交于點D,DMAB于M,DNAC延長線于N求證:BM = CN規(guī)律37. 有垂直時常構(gòu)造垂直平分線.例:已知,如圖,在ABC中,B =2C,ADBC于D求證:CD = ABBD證明:(一)在CD上截取DE = DB,連結(jié)AE,則AB = AEB =AEBB = 2CAEB = 2C又AEB = CEACC =EACAE = CE又CD = DECECD = BDAB(二)延長CB到F,使DF = DC,連結(jié)AF則AF =AC(過程略)規(guī)律38.有中點時常構(gòu)造垂直平分線.例:已知,如圖,在ABC中,BC = 2AB, ABC = 2C,BD = CD求證:ABC為直角三角形證明:過D作DEBC,交AC于E,連結(jié)BE,則BE = CE,C =EBCABC = 2CABE =EBCBC = 2AB,BD = CDBD = AB在ABE和DBE中AB = BDABE =EBCBE = BEABEDBEBAE = BDEBDE = 90oBAE = 90o即ABC為直角三角形規(guī)律39.當(dāng)涉及到線段平方的關(guān)系式時常構(gòu)造直角三角形,利用勾股定理證題.例:已知,如圖,在ABC中,A = 90o,DE為BC的垂直平分線求證:BE2AE2 = AC2證明:連結(jié)CE,則BE = CEA = 90o AE2AC2 = EC2AE2AC2= BE2BE2AE2 = AC2練習(xí):已知,如圖,在ABC中,BAC = 90o,AB = AC,P為BC上一點求證:PB2PC2= 2PA2規(guī)律40.條件中出現(xiàn)特殊角時常作高把特殊角放在直角三角形中.例:已知,如圖,在ABC中,B = 45o,C = 30o,AB =,求AC的長. 解:過A作ADBC于DBBAD = 90o,B = 45o,B = BAD = 45o,AD = BDAB2 = AD2BD2,AB =AD = 1C = 30o,ADBCAC = 2AD = 2四邊形部分規(guī)律41.平行四邊形的兩鄰邊之和等于平行四邊形周長的一半.例:已知,ABCD的周長為60cm,對角線AC、BD相交于點O,AOB的周長比BOC的周長多8cm,求這個四邊形各邊長.解:四邊形ABCD為平行四邊形AB = CD,AD = CB,AO = COABCDDACB = 60AOABOB(OBBCOC) = 8ABBC = 30,ABBC =8AB = CD = 19,BC = AD = 11答:這個四邊形各邊長分別為19cm、11cm、19cm、11cm.規(guī)律42.平行四邊形被對角線分成四個小三角形,相鄰兩個三角形周長之差等于鄰邊之差.(例題如上)規(guī)律43.有平行線時常作平行線構(gòu)造平行四邊形例:已知,如圖,RtABC,ACB = 90o,CDAB于D,AE平分CAB交CD于F,過F作FHAB交BC于H求證:CE = BH證明:過F作FPBC交AB于P,則四邊形FPBH為平行四邊形B =FPA,BH = FPACB = 90o,CDAB5CAB = 45o,BCAB = 90o5 =B5 =FPA又1 =2,AF = AFCAFPAFCF = FP4 =15,3 =2B3 =4CF = CECE = BH練習(xí):已知,如圖,ABEFGH,BE = GC求證:AB = EFGH規(guī)律44.有以平行四邊形一邊中點為端點的線段時常延長此線段. 例:已知,如圖,在ABCD中,AB = 2BC,M為AB中點求證:CMDM證明:延長DM、CB交于N四邊形ABCD為平行四邊形AD = BC,ADBCA = NBA ADN =N又AM = BMAMDBMNAD = BNBN = BCAB = 2BC,AM = BMBM = BC = BN1 =2,3 =N123N = 180o,13 = 90oCMDM規(guī)律45.平行四邊形對角線的交點到一組對邊距離相等.如圖:OE = OF規(guī)律46.平行四邊形一邊(或這邊所在的直線)上的任意一點與對邊的兩個端點的連線所構(gòu)成的三角形的面積等于平行四邊形面積的一半.如圖:SBEC = SABCD規(guī)律47.平行四邊形內(nèi)任意一點與四個頂點的連線所構(gòu)成的四個三角形中,不相鄰的兩個三角形的面積之和等于平行四邊形面積的一半.如圖:SAOB SDOC = SBOCSAOD = SABCD規(guī)律48.任意一點與同一平面內(nèi)的矩形各點的連線中,不相鄰的兩條線段的平方和相等.如圖:AO2OC2 = BO2 DO2規(guī)律49.平行四邊形四個內(nèi)角平分線所圍成的四邊形為矩形.如圖:四邊形GHMN是矩形(規(guī)律45規(guī)律49請同學(xué)們自己證明)規(guī)律50.有垂直時可作垂線構(gòu)造矩形或平行線.例:已知,如圖,E為矩形ABCD的邊AD上一點,且BE = ED,P為對角線BD上一點,PFBE于F,PGAD于G求證:PFPG = AB證明:證法一:過P作PHAB于H,則四邊形AHPG為矩形AH = GP PHADADB =HPBBE = DEEBD = ADBHPB =EBD又PFB =BHP = 90oPFBBHPHB = FPAHHB = PGPF即AB = PGPF證法二:延長GP交BC于N,則四邊形ABNG為矩形,(證明略)規(guī)律51.直角三角形常用輔助線方法:作斜邊上的高例:已知,如圖,若從矩形ABCD的頂點C作對角線BD的垂線與BAD的平分線交于點E求證:AC = CE證明:過A作AFBD,垂足為F,則AFEGFAE = AEG四邊形ABCD為矩形BAD = 90o OA = ODBDA =CADAFBDABDADB = ABDBAF = 90oBAF =ADB =CADAE為BAD的平分線BAE =DAEBAEBAF =DAEDAC即FAE =CAECAE =AEGAC = EC作斜邊中線,當(dāng)有下列情況時常作斜邊中線:有斜邊中點時例:已知,如圖,AD、BE是ABC的高, F是DE的中點,G是AB的中點求證:GFDE證明:連結(jié)GE、GDAD、BE是ABC的高,G是AB的中點GE = AB,GD = ABGE = GDF是DE的中點GFDE有和斜邊倍分關(guān)系的線段時例:已知,如圖,在ABC中,D是BC延長線上一點,且DABA于A,AC = BD求證:ACB = 2B證明:取BD中點E,連結(jié)AE,則AE = BE = BD1 =BAC = BDAC = AEACB =2 2 =1B2 = 2BACB = 2B規(guī)律52.正方形一條對角線上一點到另一條對角線上的兩端距離相等.例:已知,如圖,過正方形ABCD對角線BD上一點P,作PEBC于E,作PFCD于F 求證:AP = EF 證明:連結(jié)AC 、PC四邊形ABCD為正方形BD垂直平分AC,BCD = 90oAP = CPPEBC,PFCD,BCD = 90o四邊形PECF為矩形PC = EFAP = EF規(guī)律53.有正方形一邊中點時常取另一邊中點.例:已知,如圖,正方形ABCD中,M為AB的中點,MNMD,BN平分CBE并交MN于N求證:MD = MN證明:取AD的中點P,連結(jié)PM,則DP = PA =AD四邊形ABCD為正方形AD = AB, A =ABC = 90o1AMD = 90o,又DMMN2AMD = 90o1 =2M為AB中點AM = MB = ABDP = MB AP = AMAPM =AMP = 45oDPM =135oBN平分CBECBN = 45oMBN =MBCCBN = 90o45o= 135o即DPM =MBNDPMMBNDM = MN注意:把M改為AB上任一點,其它條件不變,結(jié)論仍然成立。練習(xí):已知,Q為正方形ABCD的CD邊的中點,P為CQ上一點,且AP = PCBC求證:BAP = 2QAD規(guī)律54.利用正方形進(jìn)行旋轉(zhuǎn)變換 旋轉(zhuǎn)變換就是當(dāng)圖形具有鄰邊相等這一特征時,可以把圖形的某部分繞相等鄰邊的公共端點旋轉(zhuǎn)到另一位置的引輔助線方法. 旋轉(zhuǎn)變換主要用途是把分散元素通過旋轉(zhuǎn)集中起來,從而為證題創(chuàng)造必要的條件. 旋轉(zhuǎn)變換經(jīng)常用于等腰三角形、等邊三角形及正方形中.例:已知,如圖,在ABC中,AB = AC,BAC = 90o,D為BC邊上任一點求證:2AD2 = BD2CD2證明:把ABD繞點A逆時針旋轉(zhuǎn)90o得ACEBD = CE B = ACEBAC = 90oDAE = 90oDE2 = AD2AE2 = 2AD2BACB = 90oDCE = 90oCD2CE2 = DE22AD2 = BD2CD2 注意:把ADC繞點A順時針旋轉(zhuǎn)90o 也可,方法同上。練習(xí):已知,如圖,在正方形ABCD中,E為AD上一點,BF平分CBE交CD于F求證:BE = CFAE規(guī)律55.有以正方形一邊中點為端點的線段時,常把這條線段延長,構(gòu)造全等三角形.例:如圖,在正方形ABCD中,E、F分別是CD、DA的中點,BE與CF交于P點求證:AP = AB 證明:延長CF交BA的延長線于K四邊形ABCD為正方形BC = AB = CD = DA BCD =D =BAD = 90o E、F分別是CD、DA的中點CE = CD DF = AF = ADCE = DFBCECDFCBE =DCF BCFDCF = 90o BCFCBE = 90oBECF又D =DAK = 90o DF = AF 1 =2CDFKAFCD = KABA = KA又BECFAP = AB練習(xí):如圖,在正方形ABCD中,Q在CD上,且DQ = QC,P在BC上,且AP = CDCP求證:AQ平分DAP規(guī)律56.從梯形的一個頂點作一腰的平行線,把梯形分成一個平行四邊形和一個三角形.例:已知,如圖,等腰梯形ABCD中,ADBC,AD = 3,AB = 4,BC = 7求B的度數(shù)解:過A作AECD交BC于E,則四邊形AECD為平行四邊形AD = EC, CD = AEAB = CD = 4, AD = 3, BC = 7 BE = AE = AB = 4ABE為等邊三角形B = 60o 規(guī)律57.從梯形同一底的兩端作另一底所在直線的垂線,把梯形轉(zhuǎn)化成一個矩形和兩個三角形.例:已知,如圖,在梯形ABCD中,ADBC,AB = AC,BAC = 90o,BD = BC,BD交AC于O求證:CO = CD證明:過A、D分別作AEBC,DFBC,垂足分別為E、F則四邊形AEFD為矩形AE = DFAB = AC,AEBC,BAC = 90o,AE = BE = CE =BC,ACB = 45o BC = BDAE = DF = BD又DFBCDBC = 30oBD = BCBDC =BCD = (180oDBC)= 75oDOC =DBCACB = 30o45o = 75oBDC =DOCCO = CD規(guī)律58.從梯形的一個頂點作一條對角線的平行線,把梯形轉(zhuǎn)化成平行四邊形和三角形.例:已知,如圖,等腰梯形ABCD中,ADBC,ACBD,ADBC = 10,DEBC于E求DE的長.解:過D作DFAC,交BC的延長線于F,則四邊形ACFD為平行四邊形AC = DF, AD = CF四邊形ABCD為等腰梯形AC = DBBD = FDDEBC BE = EF =BF=(BCCF) =(BCAD)=10 = 5ACDF,BDACBDDFBE = FEDE = BE = EF = BF = 5答:DE的長為5.規(guī)律59.延長梯形兩腰使它們交于一點,把梯形轉(zhuǎn)化成三角形.例:已知,如圖,在四邊形ABCD中,有AB = DC,B =C,ADBC求證:四邊形ABCD等腰梯形證明:延長BA、CD,它們交于點EB =CEB = EC又AB = DCAE =DE EAD =EDAEEADEDA = 180o BCE = 180o EAD =BADBCADBC,B =C四邊形ABCD等腰梯形(此題還可以過一頂點作AB或CD的平行線;也可以過A、D作BC的垂線)規(guī)律60.有梯形一腰中點時,常過此中點作另一腰的平行線,把梯形轉(zhuǎn)化成平行四邊形.例:已知,如圖,梯形ABCD中,ADBC,E為CD中點,EFAB于F求證:S梯形ABCD = EFAB證明:過E作MNAB,交AD的延長線于M,交BC于N,則四邊形ABNM為平行四邊形EFABSABNM = ABEFADBCM =MNC 又DE = CE 1 =2CENDEMSCEN = SDEMS梯形ABCD = S五邊形ABNEDSCEN = S五邊形ABNEDSDEM = S梯形ABCD = EFAB規(guī)律61. 有梯形一腰中點時,也常把一底的端點與中點連結(jié)并延長與另一底的延長線相交,把梯形轉(zhuǎn)換成三角形.例:已知,如圖,直角梯形ABCD中,ADBC,ABAD于A,DE = EC = BC求證:AEC = 3DAE證明:連結(jié)BE并延長交AD的延長線于NADBC3 =N又1 =2 ED = ECDENCEBBE = EN DN = BCABADAE = EN = BEN =DAEAEB =NDAE = 2DAEDE = BC BC = DNDE = DNN =11 =2 N =DAE2 =DAEAEB2 = 2DAEDAE即AEC = 3DAE規(guī)律62.梯形有底的中點時,常過中點做兩腰的平行線.例:已知,如圖,梯形ABCD中,ADBC,ADBC,E、F分別是AD、BC的中點,且EFBC求證:B =C證明:過E作EMAB, ENCD,交BC于M、N,則得ABME,NCDEAE = BM,AB= EM,DE = CN,CD = NEAE = DEBM = CN又BF = CFFM = FN又EFBCEM = EN1 =2ABEM, CDEN1 =B 2 =CB = C規(guī)律63. 任意四邊形的對角線互相垂直時,它們的面積都等于對角線乘積的一半.例:已知,如圖,梯形ABCD中,ADBC,AC與BD交于O,且ACBD,AC = 4,BD =

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論