高考一輪復(fù)習(xí)專題:導(dǎo)數(shù)及其應(yīng)用(含答案).doc_第1頁(yè)
高考一輪復(fù)習(xí)專題:導(dǎo)數(shù)及其應(yīng)用(含答案).doc_第2頁(yè)
高考一輪復(fù)習(xí)專題:導(dǎo)數(shù)及其應(yīng)用(含答案).doc_第3頁(yè)
高考一輪復(fù)習(xí)專題:導(dǎo)數(shù)及其應(yīng)用(含答案).doc_第4頁(yè)
高考一輪復(fù)習(xí)專題:導(dǎo)數(shù)及其應(yīng)用(含答案).doc_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

導(dǎo)數(shù)及其應(yīng)用考點(diǎn)一:導(dǎo)數(shù)概念與運(yùn)算(一)知識(shí)清單1導(dǎo)數(shù)的概念函數(shù)y=f(x),如果自變量x在x處有增量,那么函數(shù)y相應(yīng)地有增量=f(x+)f(x),比值叫做函數(shù)y=f(x)在x到x+之間的平均變化率,即=。如果當(dāng)時(shí),有極限,我們就說(shuō)函數(shù)y=f(x)在點(diǎn)x處可導(dǎo),并把這個(gè)極限叫做f(x)在點(diǎn)x處的導(dǎo)數(shù),記作f(x)或y|。即f(x)=。說(shuō)明:(1)函數(shù)f(x)在點(diǎn)x處可導(dǎo),是指時(shí),有極限。如果不存在極限,就說(shuō)函數(shù)在點(diǎn)x處不可導(dǎo),或說(shuō)無(wú)導(dǎo)數(shù)。(2)是自變量x在x處的改變量,時(shí),而是函數(shù)值的改變量,可以是零。由導(dǎo)數(shù)的定義可知,求函數(shù)y=f(x)在點(diǎn)x處的導(dǎo)數(shù)的步驟:(1)求函數(shù)的增量=f(x+)f(x);(2)求平均變化率=;(3)取極限,得導(dǎo)數(shù)f(x)=。2導(dǎo)數(shù)的幾何意義函數(shù)y=f(x)在點(diǎn)x處的導(dǎo)數(shù)的幾何意義是曲線y=f(x)在點(diǎn)p(x,f(x)處的切線的斜率。也就是說(shuō),曲線y=f(x)在點(diǎn)p(x,f(x)處的切線的斜率是f(x)。相應(yīng)地,切線方程為yy=f/(x)(xx)。3幾種常見(jiàn)函數(shù)的導(dǎo)數(shù): ; ; ; .4兩個(gè)函數(shù)的和、差、積的求導(dǎo)法則法則1:兩個(gè)函數(shù)的和(或差)的導(dǎo)數(shù),等于這兩個(gè)函數(shù)的導(dǎo)數(shù)的和(或差),即: (法則2:兩個(gè)函數(shù)的積的導(dǎo)數(shù),等于第一個(gè)函數(shù)的導(dǎo)數(shù)乘以第二個(gè)函數(shù),加上第一個(gè)函數(shù)乘以第二個(gè)函數(shù)的導(dǎo)數(shù),即:若C為常數(shù),則.即常數(shù)與函數(shù)的積的導(dǎo)數(shù)等于常數(shù)乘以函數(shù)的導(dǎo)數(shù): 法則3:兩個(gè)函數(shù)的商的導(dǎo)數(shù),等于分子的導(dǎo)數(shù)與分母的積,減去分母的導(dǎo)數(shù)與分子的積,再除以分母的平方:=(v0)。形如y=f的函數(shù)稱為復(fù)合函數(shù)。復(fù)合函數(shù)求導(dǎo)步驟:分解求導(dǎo)回代。法則:y|= y| u|(二)典型例題分析題型一:導(dǎo)數(shù)的概念及其運(yùn)算例1. 如果質(zhì)點(diǎn)A按規(guī)律運(yùn)動(dòng),則在t=3 s時(shí)的瞬時(shí)速度為( )A. 6m/s B. 18m/s C. 54m/s D. 81m/s變式:定義在D上的函數(shù),如果滿足:,常數(shù),都有M成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界.【文】(1)若已知質(zhì)點(diǎn)的運(yùn)動(dòng)方程為,要使在上的每一時(shí)刻的瞬時(shí)速度是以M=1為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.【理】(2)若已知質(zhì)點(diǎn)的運(yùn)動(dòng)方程為,要使在上的每一時(shí)刻的瞬時(shí)速度是以M=1為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.例2. 已知的值是( )A. B. 2 C. D. 2變式1:( )A2C3D1變式2:( )ABCD例3. 求所給函數(shù)的導(dǎo)數(shù):變式:設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x0時(shí),0.且g(3)=0.則不等式f(x)g(x)0的解集是( )A(3,0)(3,+) B(3,0)(0, 3)C(, 3)(3,+) D(, 3)(0, 3)題型二:導(dǎo)數(shù)的幾何意義 已知切點(diǎn),求曲線的切線方程;注:此類題較為簡(jiǎn)單,只須求出曲線的導(dǎo)數(shù),并代入點(diǎn)斜式方程即可例4. 曲線在點(diǎn)處的切線方程為() 已知斜率,求曲線的切線方程;注:此類題可利用斜率求出切點(diǎn),再用點(diǎn)斜式方程加以解決例5. 與直線的平行的拋物線的切線方程是() 已知過(guò)曲線外一點(diǎn),求切線方程;此類題可先設(shè)切點(diǎn),再求切點(diǎn),即用待定切點(diǎn)法來(lái)求解例6. 求過(guò)點(diǎn)且與曲線相切的直線方程變式1、已知函數(shù)的圖象在點(diǎn)處的切線方程是,則 。變式2、考點(diǎn)二:導(dǎo)數(shù)應(yīng)用(一)知識(shí)清單1 單調(diào)區(qū)間:一般地,設(shè)函數(shù)在某個(gè)區(qū)間可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù);如果在某區(qū)間內(nèi)恒有,則為常數(shù);2極點(diǎn)與極值:曲線在極值點(diǎn)處切線的斜率為0,極值點(diǎn)處的導(dǎo)數(shù)為0;曲線在極大值點(diǎn)左側(cè)切線的斜率為正,右側(cè)為負(fù);曲線在極小值點(diǎn)左側(cè)切線的斜率為負(fù),右側(cè)為正;3最值:一般地,在區(qū)間a,b上連續(xù)的函數(shù)f在a,b上必有最大值與最小值。求函數(shù)在(a,b)內(nèi)的極值;求函數(shù)在區(qū)間端點(diǎn)的值(a)、(b);將函數(shù) 的各極值與(a)、(b)比較,其中最大的是最大值,其中最小的是最小值。4定積分(1)概念:設(shè)函數(shù)f(x)在區(qū)間a,b上連續(xù),用分點(diǎn)ax0x1xi1xixnb把區(qū)間a,b等分成n個(gè)小區(qū)間,在每個(gè)小區(qū)間xi1,xi上取任一點(diǎn)i(i1,2,n)作和式In(i)x(其中x為小區(qū)間長(zhǎng)度),把n即x0時(shí),和式In的極限叫做函數(shù)f(x)在區(qū)間a,b上的定積分,記作:,即(i)x。這里,a與b分別叫做積分下限與積分上限,區(qū)間a,b叫做積分區(qū)間,函數(shù)f(x)叫做被積函數(shù),x叫做積分變量,f(x)dx叫做被積式?;镜姆e分公式:C;C(mQ, m1);dxlnC;C;C;sinxC;cosxC(表中C均為常數(shù))。(2)定積分的性質(zhì)(k為常數(shù));(其中acb。(3)定積分求曲邊梯形面積由三條直線xa,xb(ab),x軸及一條曲線yf(x)(f(x)0)圍成的曲邊梯的面積。如果圖形由曲線y1f1(x),y2f2(x)(不妨設(shè)f1(x)f2(x)0),及直線xa,xb(a1()討論f(x)的單調(diào)性; ()若當(dāng)x0時(shí),f(x)0恒成立,求a的取值范圍。w.w.w.k.s.5.u.c.o.m 課后作業(yè)1、曲線在點(diǎn)處的切線方程是 。2、.已知曲線C:,直線,且直線與曲線C相切于點(diǎn),求直線的方程及切點(diǎn)坐標(biāo)。3、設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,導(dǎo)函數(shù)的最小值為。(1)求,的值;(2)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)在上的最大值和最小值。4、設(shè)函數(shù),已知是奇函數(shù)。(1)求、的值。(2)求的單調(diào)區(qū)間與極值。5、已知函數(shù),()討論函數(shù)的單調(diào)區(qū)間;()設(shè)函數(shù)在區(qū)間內(nèi)是減函數(shù),求的取值范圍6、已知函數(shù) (I)若函數(shù)的圖象過(guò)原點(diǎn),且在原點(diǎn)處的切線斜率是,求的值; (II)若函數(shù)在區(qū)間上不單調(diào),求的取值范圍7、已知函數(shù).(1) 設(shè),求函數(shù)的極值;(2) 若,且當(dāng)時(shí),12a恒成立,試確定的取值范圍.8、若函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍附加:1(福建)已知對(duì)任意實(shí)數(shù),有,且時(shí),則時(shí)( )ABCD2(海南)曲線在點(diǎn)處的切線與坐標(biāo)軸所圍三角形的面積為( )3(海南)曲線在點(diǎn)處的切線與坐標(biāo)軸所圍三角形的面積為( )4(江蘇)已知二次函數(shù)的導(dǎo)數(shù)為,對(duì)于任意實(shí)數(shù)都有,則的最小值為( )A B C D5若,則下列命題中正確的是()ABCD6(江西)若,則下列命題正確的是( )ABCD7(遼寧)已知與是定義在上的連續(xù)函數(shù),如果與僅當(dāng)時(shí)的函數(shù)值為0,且,那么下列情形不可能出現(xiàn)的是(C )A0是的極大值,也是的極大值B0是的極小值,也是的極小值C0是的極大值,但不是的極值D0是的極小值,但不是的極值8(全國(guó)一)曲線在點(diǎn)處的切線與坐標(biāo)軸圍成的三角形面積為( )ABCD9(全國(guó)二)已知曲線的一條切線的斜率為,則切點(diǎn)的橫坐標(biāo)為( )A1B2C3D410(浙江)設(shè)是函數(shù)的導(dǎo)函數(shù),將和的圖象畫在同一個(gè)直角坐標(biāo)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論