![高等數(shù)學(xué)A-第2章-11-1(導(dǎo)數(shù)的基本概念).ppt_第1頁](http://file1.renrendoc.com/fileroot2/2020-1/8/9cf408f3-7f23-4d56-a1b4-dab7275426ed/9cf408f3-7f23-4d56-a1b4-dab7275426ed1.gif)
![高等數(shù)學(xué)A-第2章-11-1(導(dǎo)數(shù)的基本概念).ppt_第2頁](http://file1.renrendoc.com/fileroot2/2020-1/8/9cf408f3-7f23-4d56-a1b4-dab7275426ed/9cf408f3-7f23-4d56-a1b4-dab7275426ed2.gif)
![高等數(shù)學(xué)A-第2章-11-1(導(dǎo)數(shù)的基本概念).ppt_第3頁](http://file1.renrendoc.com/fileroot2/2020-1/8/9cf408f3-7f23-4d56-a1b4-dab7275426ed/9cf408f3-7f23-4d56-a1b4-dab7275426ed3.gif)
![高等數(shù)學(xué)A-第2章-11-1(導(dǎo)數(shù)的基本概念).ppt_第4頁](http://file1.renrendoc.com/fileroot2/2020-1/8/9cf408f3-7f23-4d56-a1b4-dab7275426ed/9cf408f3-7f23-4d56-a1b4-dab7275426ed4.gif)
![高等數(shù)學(xué)A-第2章-11-1(導(dǎo)數(shù)的基本概念).ppt_第5頁](http://file1.renrendoc.com/fileroot2/2020-1/8/9cf408f3-7f23-4d56-a1b4-dab7275426ed/9cf408f3-7f23-4d56-a1b4-dab7275426ed5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、中南大學(xué)開放式精品示范課堂高等數(shù)學(xué)建設(shè)組,第2章 一元函數(shù)微分學(xué),高等數(shù)學(xué)A,2.1 導(dǎo)數(shù)及微分,2.1.1 引例 2.1.2 導(dǎo)數(shù)概念 2.1.3 導(dǎo)數(shù)的幾何意義 2.1.4 可導(dǎo)與連續(xù)的關(guān)系 2.1.5 求導(dǎo)數(shù)的例題 導(dǎo)數(shù)基本公式表,微積分學(xué)(calculus),以研究函數(shù)的微分和積分及其應(yīng)用為主的一門,數(shù)學(xué)學(xué)科,微分學(xué),1.物體運(yùn)動(dòng)時(shí)要求出它在任一時(shí)刻的速度和加速度,2.研究光線通過透鏡的規(guī)律時(shí)要求出光滑曲線上給定,點(diǎn)的切線和法線,3.研究炮彈的射程時(shí)要求出函數(shù)的最大值和最小值,積分學(xué),研究曲線的長度、物體的體積、曲面的面積、,以及天體間的引力等,2.1 導(dǎo)數(shù)及微分,2.1.1 引例,速
2、度問題,2.1.2 導(dǎo)數(shù)的概念,左右導(dǎo)數(shù)定義,區(qū)間上導(dǎo)函數(shù)定義,用導(dǎo)數(shù)定義求函數(shù)導(dǎo)數(shù),用定義求導(dǎo)數(shù)習(xí)例1-5,2.1.3 導(dǎo)數(shù)的意義,物理意義,2.1.4 可導(dǎo)與連續(xù)的關(guān)系,2.1.5 求導(dǎo)數(shù)的例題導(dǎo)數(shù)基本公式,連續(xù)函數(shù)不存在導(dǎo)數(shù)舉例,導(dǎo)數(shù)基本公式,內(nèi)容小結(jié),課堂思考與練習(xí),導(dǎo)數(shù)及微分,一.引例,1.切線問題,割線的極限位置切線,割線 MN 的斜率為,2.速度問題,二、導(dǎo)數(shù)定義,(變化率),定義:,注意:,單側(cè)導(dǎo)數(shù),(左右導(dǎo)數(shù)),左導(dǎo)數(shù):,右導(dǎo)數(shù):,注:單側(cè)導(dǎo)數(shù)經(jīng)常在研究分段函數(shù)分段點(diǎn)和區(qū)間端點(diǎn)的 可導(dǎo)性時(shí)碰到, 并且有結(jié)論:,(導(dǎo)函數(shù)),(2) 速度是路程函數(shù)的導(dǎo)數(shù), 即,用定義求函數(shù)導(dǎo)數(shù)步
3、驟:,用導(dǎo)數(shù)定義求函數(shù)導(dǎo)數(shù)習(xí)例,解:,由導(dǎo)數(shù)定義得,解:,注意:,解:,解:,解:,切線方程:,法線方程:,幾何意義,注意:,此時(shí)切線與x軸平行;,此時(shí)切線與x軸垂直.,(2)當(dāng)導(dǎo)數(shù)存在時(shí), 一定能夠找到切線; 反之, 當(dāng)有切線時(shí),不一定導(dǎo)數(shù)存在!,解:,割線的斜率為,所求點(diǎn)為 (2,4).,物理意義,(非均勻變化量的瞬時(shí)變化率),變速直線運(yùn)動(dòng):路程對(duì)時(shí)間的導(dǎo)數(shù)為物體的瞬時(shí)速度.,交流電路:電量對(duì)時(shí)間的導(dǎo)數(shù)為電流強(qiáng)度.,非均勻的物體:質(zhì)量對(duì)長度(面積,體積)的導(dǎo)數(shù)為物體的線(面,體)密度.,三、函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系,定理:,-可導(dǎo)必連續(xù),證明:,注意:,解:,四、求導(dǎo)數(shù)的習(xí)例,解:,所以
4、 f (x) 在 x=0 處連續(xù).,解:,因?yàn)?f(x) 在 x=1處連續(xù),可得,由 f (x)在 x=1處可導(dǎo),可得,解:,解:,連續(xù)函數(shù)不存在導(dǎo)數(shù)舉例,例如,例如,例如,導(dǎo)數(shù)基本公式(已學(xué)求導(dǎo)公式) :,內(nèi)容小結(jié),1. 導(dǎo)數(shù)的實(shí)質(zhì):,3. 導(dǎo)數(shù)的幾何意義:,4. 可導(dǎo)必連續(xù), 但連續(xù)不一定可導(dǎo);,5. 已學(xué)求導(dǎo)公式 :,6. 判斷可導(dǎo)性,不連續(xù), 一定不可導(dǎo).,直接用導(dǎo)數(shù)定義;,看左右導(dǎo)數(shù)是否存在且相等.,2.,增量比的極限;,切線的斜率;,思考題,1函數(shù),在連續(xù)點(diǎn)不可導(dǎo)有哪些類型?,2函數(shù),在點(diǎn),可導(dǎo),是否函數(shù)在點(diǎn),的某個(gè)鄰域內(nèi)每一點(diǎn)可導(dǎo)?,3符號(hào),與,4. 求哪些函數(shù)個(gè)別點(diǎn)的導(dǎo)數(shù)或左右導(dǎo)數(shù)應(yīng)用導(dǎo)數(shù)的定義?,在點(diǎn),不可導(dǎo),則曲線,在點(diǎn),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度環(huán)境安全管理借讀生實(shí)習(xí)協(xié)議-@-1
- 咨詢服務(wù)居間協(xié)議
- 衢州波形瀝青瓦施工方案
- 鞍山2024年小升初數(shù)學(xué)試卷
- 藥品配送應(yīng)急服務(wù)方案
- 隴南電梯內(nèi)部裝潢施工方案
- 代簽工程質(zhì)保金合同范例
- 茂名工廠道路劃線施工方案
- 公司出售股權(quán)合同范例
- 單招湖南數(shù)學(xué)試卷
- 2025中國南光集團(tuán)限公司校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 機(jī)加工行業(yè)安全生產(chǎn)風(fēng)險(xiǎn)辨識(shí)及控制清單
- 江蘇省蘇州市2024-2025學(xué)年第一學(xué)期八年級(jí)數(shù)學(xué)期末模擬卷(一)(無答案)
- 【歷史】秦漢時(shí)期:統(tǒng)一多民族國家的建立和鞏固復(fù)習(xí)課件-2024-2025學(xué)年統(tǒng)編版七年級(jí)歷史上冊(cè)
- 社區(qū)中心及衛(wèi)生院65歲及以上老年人健康體檢分析報(bào)告模板
- 化工過程安全管理導(dǎo)則AQT 3034-2022知識(shí)培訓(xùn)
- 第02講 導(dǎo)數(shù)與函數(shù)的單調(diào)性(教師版)-2025版高中數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)幫
- 2024屆新高考語文高中古詩文必背72篇 【原文+注音+翻譯】
- 中華人民共和國學(xué)前教育法
- 2024年貴州公務(wù)員考試申論試題(B卷)
- 三年級(jí)(下冊(cè))西師版數(shù)學(xué)全冊(cè)重點(diǎn)知識(shí)點(diǎn)
評(píng)論
0/150
提交評(píng)論