版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、彈性學(xué)制數(shù)學(xué)講義不等式(4課時)知識梳理1、不等式的基本性質(zhì)(對稱性)(傳遞性)(可加性)(同向可加性)(異向可減性)(可積性)(同向正數(shù)可乘性)(異向正數(shù)可除性)(平方法則)(開方法則)(倒數(shù)法則)2、幾個重要不等式,(當(dāng)且僅當(dāng)時取號). 變形公式:(基本不等式) ,(當(dāng)且僅當(dāng)時取到等號).變形公式: 用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.(三個正數(shù)的算術(shù)幾何平均不等式)(當(dāng)且僅當(dāng)時取到等號).(當(dāng)且僅當(dāng)時取到等號).(當(dāng)且僅當(dāng)時取到等號).(當(dāng)僅當(dāng)a=b時取等號)(當(dāng)僅當(dāng)a=b時取等號),(其中規(guī)律:小于1同加則變大,大于1同加則變小.絕
2、對值三角不等式3、幾個著名不等式平均不等式:,當(dāng)且僅當(dāng)時取號).(即調(diào)和平均幾何平均算術(shù)平均平方平均). 變形公式: 冪平均不等式:二維形式的三角不等式:二維形式的柯西不等式: 當(dāng)且僅當(dāng)時,等號成立.三維形式的柯西不等式:一般形式的柯西不等式:向量形式的柯西不等式:設(shè)是兩個向量,則當(dāng)且僅當(dāng)是零向量,或存在實數(shù),使時,等號成立.排序不等式(排序原理):設(shè)為兩組實數(shù).是的任一排列,則(反序和亂序和順序和),當(dāng)且僅當(dāng)或時,反序和等于順序和.琴生不等式:(特例:凸函數(shù)、凹函數(shù))若定義在某區(qū)間上的函數(shù),對于定義域中任意兩點有則稱f(x)為凸(或凹)函數(shù).4、不等式證明的幾種常用方法 常用方法有:比較法(
3、作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等.常見不等式的放縮方法:舍去或加上一些項,如將分子或分母放大(縮?。?,如 等.5、一元二次不等式的解法求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù).二判:判斷對應(yīng)方程的根.三求:求對應(yīng)方程的根.四畫:畫出對應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫出不等式的解集.規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊.6、高次不等式的解法:穿根法.分解因式,把根標(biāo)在數(shù)軸上,從右上方依次往下穿(奇穿偶切),結(jié)合原式不等號的方向,寫出不等式的解集.7、分式不等式的解法:先移項通分標(biāo)準(zhǔn)化,則 (時同理)
4、規(guī)律:把分式不等式等價轉(zhuǎn)化為整式不等式求解.8、無理不等式的解法:轉(zhuǎn)化為有理不等式求解規(guī)律:把無理不等式等價轉(zhuǎn)化為有理不等式,訣竅在于從“小”的一邊分析求解.9、指數(shù)不等式的解法:當(dāng)時,當(dāng)時, 規(guī)律:根據(jù)指數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化.10、對數(shù)不等式的解法當(dāng)時, 當(dāng)時, 規(guī)律:根據(jù)對數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化.11、含絕對值不等式的解法:定義法:平方法:同解變形法,其同解定理有:規(guī)律:關(guān)鍵是去掉絕對值的符號.12、含有兩個(或兩個以上)絕對值的不等式的解法:規(guī)律:找零點、劃區(qū)間、分段討論去絕對值、每段中取交集,最后取各段的并集.13、含參數(shù)的不等式的解法解形如且含參數(shù)的不等式時,要對參數(shù)進(jìn)行分類討論,分類討論的標(biāo)準(zhǔn)有:討論與0的大??;討論與0的大小;討論兩根的大小.14、恒成立問題不等式的解集是全體實數(shù)(或恒成立)的條件是:當(dāng)時 當(dāng)時不等式的解集是全體實數(shù)(或恒成立)的條件是:當(dāng)時當(dāng)時恒成立恒成立恒成立恒成立15、線性規(guī)劃問題常見的目標(biāo)函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年房產(chǎn)聯(lián)合租賃協(xié)議
- 2024互聯(lián)網(wǎng)科技創(chuàng)新項目股權(quán)轉(zhuǎn)讓協(xié)議
- 2024年攝影師版權(quán)協(xié)議范本
- 2024年攜手同行:旅行社與酒店聯(lián)盟協(xié)議
- 2024年新品代理協(xié)議:產(chǎn)品采購與分銷合同
- 2024年房屋租賃升級版:補充協(xié)議書
- 2024年房屋買賣雙方權(quán)益保障協(xié)議
- 2024年新品:物流配送委托協(xié)議
- 2024年房地產(chǎn)咨詢保密協(xié)議書
- 體育賽事營銷合作協(xié)議
- (完整版)分析化學(xué)題庫精華版.doc
- 汽車尾氣排放檢測操作標(biāo)準(zhǔn)
- 塔吊基礎(chǔ)下?lián)Q填地基設(shè)計
- 《中醫(yī)基礎(chǔ)理論腎》PPT課件.ppt
- 顧問咨詢服務(wù)合同
- CNAS-EC-017_2017《認(rèn)證機構(gòu)認(rèn)可風(fēng)險分級管理辦法》
- 事故安全培訓(xùn)案例(一)
- 考題六年級數(shù)學(xué)上冊看圖列方程計算專項北師大版
- 高壓線遷移施工方案
- 培智學(xué)校的心理健康教育模式探索
- 《數(shù)學(xué)家的故事》讀后感(7篇)
評論
0/150
提交評論