版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、暑假專題一一多邊形(一)知識(shí)整理1. 知識(shí)結(jié)構(gòu)三角形的三邊關(guān)系2. 主要知識(shí)內(nèi)容:通過本章的學(xué)習(xí),我們應(yīng)掌握以下知識(shí)內(nèi)容:(1)瓷磚的鋪設(shè):1密鋪的特征:相鄰幾個(gè)多邊形中,在同一頂點(diǎn)的幾個(gè)角的和等于3602常見的地磚形狀:三角形、四邊形和正六邊形(2 )三角形:1三角形的分類 三角形按邊分類:不等邊三角形三角形仁腰和底不相等的等腰三角形等腰三角形2等邊三角形 三角形按角分類:”銳角三角形三角形(直角三角形鈍角三角形銳角三角形斜三角形三角形$、鈍角三角形或直角三角形注意:等邊三角形是特殊的等腰三角形,切記不能將三角形按邊分成不等邊三角形、等腰三角形和等 邊三角形三類。2三角形各角之間的關(guān)系: 三
2、角形的內(nèi)角和等于180 三角形的外角和等于 360 (每個(gè)頂點(diǎn)處只取一個(gè)外角) 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角3三角形的三邊關(guān)系: 三角形的任何兩邊的和大于第三邊 判斷三條線段能否構(gòu)成一個(gè)三角形時(shí),就看這三條線段是否滿足任何兩邊之和大于第三邊,其簡(jiǎn)便 方法是看兩條較短線段的和是否大于第三條最長(zhǎng)的線段。(3)多邊形的內(nèi)角和與外角和n邊形的內(nèi)角和等于(n- 2) 180,n邊形的外角和等于 360 正n邊形的每個(gè)內(nèi)角都等于 (n -2) 180,每個(gè)外角都等于 360nn n邊形從一個(gè)頂點(diǎn)出發(fā)有(n - 3)條對(duì)角線,n邊形共有 垃 可條
3、對(duì)角線2(4)用正多邊形拼地板: 正多邊形拼地板的必要條件:圍繞一點(diǎn)拼在一起的幾個(gè)正多邊形的內(nèi)角加在一起恰好組成一個(gè)周角。 一種正多邊形能密鋪平面的只有:正三角形、正方形和正六邊形 兩種或兩種以上正多邊形組合密鋪平面的設(shè)計(jì)?!纠}分析】例 1.( 1)如圖(a),求證:/BDC=NA+NB+NC(2)如圖(b),若 NBGC =130。,求 NA +NB +NC 中藝D +NE +NF的度數(shù)。FC分析:我們知道,三角形的一個(gè)外角等于和它不相鄰的兩內(nèi)角之和,這里是求證一個(gè)角等于三個(gè)角的 和,這就啟示我們要將此圖化為三角形進(jìn)行研究。解:(1)法一:如圖1,延長(zhǎng)BD交AC于E圖1BDCDEC CDE
4、CABBDCAB C法二:如圖2,連結(jié)AD并延長(zhǎng)至E則 BDE B BAECDE =/C CAEBDE CDE = B C BAE CAE 即 BDC =/B C BAC法三:如圖3,連結(jié)BCAABC ACB = D DBC DCB = 180即 A ABD DBC ACD DCB D DBCDCBD = A ABD ACD(2)BGC A B CEGF D E FA B C D E F二/BGCEGF=2 BGC =2 130-260Ah,角平分線BE、CF相交于O,如圖所示,BOCA.190B.190 -22心1C.180D.180 -2例2.(遼寧省03年中考)已知 ABC中, 的度數(shù)應(yīng)
5、為()A分析:.BOC與已知角.A不在一個(gè)三角形中, 定理,通過.OBC與.OCB建立它們之間的聯(lián)系。要建立.BOC和.A的聯(lián)系,需應(yīng)用三角形內(nèi)角和解:;BE, CF分別是角平分線1 1OBC ABC, OCB ACB 221BOC =180( ABC ACB)ABC ACB =180A1 BOC =180 -尹80 -. A)1= 180 -90 A21 =90 A21 =902(拓展延伸)(1) 本題是近幾年全國(guó)各省市中考題的熱點(diǎn)之一,陜西省、山西省、遼寧省幾省市近三年的中考題都 考了本題的特例。(2)如圖,角平分線 AD BE、CF交于0,類似的有1AOC = 90 ABC21AOB 二
6、 90 ACB2A(3)由上述結(jié)果,11.EOC =180 -. BOC =180 -(90 BAC) = 90 BAC2 21故乙EOC與 ZBAC互余,圖中還有其它互余的角嗎?2例3.(山東省03年中考題)已知一個(gè)等腰三角形的三邊長(zhǎng)分別為x, 2x -1 , 5x-3,其周長(zhǎng)為 分析:從等腰三角形的兩腰相等入手,根據(jù)題意,設(shè)其中兩邊為腰,列出關(guān)于x的方程,進(jìn)而可求各邊長(zhǎng),同時(shí)應(yīng)考慮到應(yīng)分三種情況討論。解:(1)若x = 2x - 1,則x = 1,三邊分別為1,1,22 112(2 )若2x -53 -,則x二一,三邊長(zhǎng)分別為,3 3333 3 13(3 )若x = 5x - 3,則x,三
7、邊長(zhǎng)分別為,一,一4 4 2 4 ( 1)( 2)兩種情況不符三邊關(guān)系定理,故舍去3 13其周長(zhǎng)為24 24易錯(cuò)分析:解本題除注意分類討論外,還應(yīng)注意到等腰三角形三邊也應(yīng)滿足三角形三邊關(guān)系這一隱含 條件。例4.如果多邊形的邊數(shù)增加 1,那么這個(gè)多邊形的內(nèi)角和增加多少度?將n邊形的邊數(shù)增加1倍,則它的內(nèi)角和增加多少度?上述兩種情況下外角和怎樣變化?解:設(shè)這個(gè)多邊形的邊數(shù)為 n,當(dāng)邊數(shù)增加1后,多邊形的邊數(shù)變?yōu)椋╪ +1),則兩個(gè)多邊形的內(nèi)角和之 差為(n1)-2 180 (n -2) 180 =180當(dāng)多邊形的邊數(shù)增加1倍時(shí),邊數(shù)變化為2n,則此時(shí)兩個(gè)多邊形的內(nèi)角和之差為(2n 2) 180 (
8、n 2) 180 =n 180上述兩種變化情況下,多邊形的外角和保持不變,都是360例5. ( 1)已知如圖(a),在也ABC中,N CaNBA D丄BC于D,AE平分N BAC,則N EAD與B, C有何數(shù)量關(guān)系?(a)(2)如圖(b), AE平分N BAC , F為其上一點(diǎn),且 FDB C于D,這時(shí)N EFD與三B、藝C又有何數(shù)量關(guān)系?(b)(3)如圖(c),AE平分.BAC,F(xiàn)為AE延長(zhǎng)線上一點(diǎn),F(xiàn)DB C于D,這時(shí).AFD與.B、 C又有何數(shù)量關(guān)系?分析:在(1)問中,要找出 EAD與B C的數(shù)量關(guān)系,可考慮利用三角形內(nèi)角和定理及三角形的外角性質(zhì)轉(zhuǎn)化,同時(shí)應(yīng)注意靈活運(yùn)用圖中隱含的角與角
9、的和差關(guān)系,在解決第(2)、(3)問時(shí),應(yīng)注意把它轉(zhuǎn)化為第(1 )問的情形,運(yùn)用第(1)問的結(jié)論,過點(diǎn) A作AG_2C,則有.EFD EAG解:(1) AD_BCADC = 90CAD =180 - CA DCCAD =180/C -909二 0 - CAE平分 BAC1EAC BAC2.BAC =180 B - . C111.EAC (180-ZB-/C) =90B C22211/EAC -/CAD =90BC-(90 )2211=90BC - 90 C221c C - B)21即.EAD ( . C- . B)21(2)如圖(b),過 A作 AGB C于 6,由(1)知 NEAG = (N
10、C ZB)2AG_BCAGC =90FD_BCFDG =90AGC =/FDG.FD /AG . EFD EAG/ 1 / /EFD ( C- /B)21(3)如圖(c),過點(diǎn) A 作 AGB C于 6由(1)知 NEAG =2(CB)AG_BCDF_BCAGB = /FDCAFD 二 EAGAGB =90FDC =90FD/AB1AFD ( C - B)2說明:在處理三角形中角的問題時(shí),有時(shí)需要從整體出發(fā)進(jìn)行思考,有時(shí)也可以通過適當(dāng)添加輔助線 使未知問題轉(zhuǎn)化成已解決的問題,像本題這種類型的題目,既要看到圖形的變化,又要抓住變化中的內(nèi)在 聯(lián)系。例6.如圖,點(diǎn)A、0、B在同一直線上,點(diǎn) C、0、
11、D在同一直線上, ADO的平分線交 CBO的平分 線于點(diǎn)P(1 )若 A =50, C =40,求.P 的度數(shù);(2)試歸納.A、. C與.P之間的關(guān)系B分析:本題圖形較復(fù)雜,涉及的三角形較多,雖然.A與.C的度數(shù)是已知的,但 AOD和 COB的 形狀是可以改變的,因此圖中許多角的度數(shù)在變化,為什么 P是不變量呢?解:(1)在 BCF和 PDF中,有三P 三3 = C 在PBE和ADE中,有 P 2A 4 .2 P 23 =/AC 14BP平分 CBO,DP平分 ADOP = * A C)弓(50 40 ) = 45(2 )由(1 )知 A C與P之間的關(guān)系為 P=l(. A C)2【模擬試題
12、】(答題時(shí)間:60分鐘)1. 已知等腰三角形兩邊長(zhǎng)分別為 4和9,則第三邊的長(zhǎng)為 2. 兩個(gè)木棒的長(zhǎng)分別為 3cm和5cm,要選擇第三根木棒, 將它們釘成一個(gè)三角架,若第三根木棒長(zhǎng)為偶數(shù),則第三根木棒長(zhǎng) cm。3. 已知a、b、c為三角形三邊的長(zhǎng),且|a-b(3a-2bc )2 = 0,則這個(gè)三角形的形狀為 4. 如圖,已知NA8 0,( 1)若點(diǎn)O為兩角平分線的交點(diǎn),貝U BOC=;(2)若點(diǎn)O為兩條高的交點(diǎn),BOC=。A5.女口圖,在四邊形 ABCD 中1=2, 3=4,5=6,78 ,則NE +NF=6. 等腰三角形的周長(zhǎng)為 20cm, (1)若其中一邊長(zhǎng)為6cm,則腰長(zhǎng)為 ; (2)若
13、其中一邊長(zhǎng)為5cm,則腰長(zhǎng)為7. 過n邊形的一個(gè)頂點(diǎn)有2m條對(duì)角線,m邊形沒有對(duì)角線,k邊形有k條對(duì)角線,則(n _km =28.如圖,ABC的面積等于12cm , D為AB的中點(diǎn),E是AC邊上一點(diǎn),且 AE=2EC, O為DC與BE交點(diǎn),若也DBO的面積為acm2, N CEO的面積為bcm2,則a-b=A9. 三角形中,最大角:的取值范圍是()A. 0- - 90B. 60 : : : 180C. 60 豈:::90D. 60 乞:18010. 一個(gè)三角形的周長(zhǎng)為奇數(shù),其中兩條邊長(zhǎng)分別為4和1997,則滿足條件的三角形的個(gè)數(shù)是()A. 3B. 4C. 5D. 611. 能鋪滿地面的正多邊形
14、組合是()A.正三角形和正八邊形B.正五邊形和正十邊形C.正三角形和正十二邊形D.正六邊形和正八邊形12如圖,在厶ABC中,D是BC上一點(diǎn),若 B= /C, 1 =/3,則 1與2的關(guān)系為( )A. 1 =22B. 12 =180C. Z1 - 3/2 =180D. 3/1/2 =180A13. 一個(gè)多邊形除去一個(gè)內(nèi)角之外,其余各內(nèi)角的和為2570,則這個(gè)內(nèi)角的度數(shù)為()A. 90 B. 105 C. 130 D. 12014如圖,已知在 ABC 中,.C=90 , B=34 ,1 = /2, AEB=104,問 AD 平分 BAC嗎?請(qǐng)說明理由。15.已知:如圖是不規(guī)則的六邊形地磚,在六邊形
15、 ABCDEF中,每個(gè)內(nèi)角為120 ,且AB=BC=3,AF=DE=2,求該六邊形地磚的周長(zhǎng)。16.如圖中的幾個(gè)圖形是五角星和它的變形(1 )圖(1 )中是一個(gè)五角星,求A:BC:D:E(2 )圖(1)中點(diǎn)A向下移到BE上,五個(gè)角的和有無(wú)變化?(即 CAD B C D E)如圖(2),說明你的結(jié)論的正確性。(3)把圖(2)中點(diǎn)C向上移動(dòng)到BD上,五個(gè)角的和(即.CAD . B . ACE . D E )有 無(wú)變化?如圖(3),說明你的結(jié)論的正確性。【試題答案】一.1. 92. 4 或 63. 等邊三角形(提示: ab =03 a-2b-c = 0)4. ( 1)130(2)100 (點(diǎn)撥:此題
16、中,.BOC=/A . ABO . ACO)5. 180(點(diǎn)撥: E F 二(180 -. 2 - . 3)(1806 -. 7)=360 -( 2 3. 6. 7)1= 360( BAC ABC BCD ADC)1=3603602-180把.E與.F的和當(dāng)作一個(gè)整體去考慮)6. ( 1) 6cm 或 7cm( 2) 7.5cm7. 12(點(diǎn)撥:m=3,有 n3 = 2m,即 n 3= 6* 9,又企尹5是(n - k) m =(9 -5)3 =12 )c28. 2cm11(a - b = SBDC - S .Bec = 2SABC - 3S ABC = 6 - 4 = 2 )239. D11. C10. B( 1994,1996,1998,2000 四種情況)12. D13. C14. AD 平分
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市核心區(qū)地下車位銷售協(xié)議范本
- 2024防水施工方勞動(dòng)協(xié)議模板
- 二手房交易規(guī)范協(xié)議2024年
- 2024年度醫(yī)療機(jī)構(gòu)員工勞動(dòng)協(xié)議
- 2024年世界杯官方吉祥物發(fā)布:小星星閃耀綠茵場(chǎng)
- 2024年環(huán)保教育《垃圾分類》教案新編
- 2024年鋼筋施工專項(xiàng)服務(wù)協(xié)議
- 2024年教學(xué)創(chuàng)新:多媒體教學(xué)課件設(shè)計(jì)在課堂中的應(yīng)用
- 六年級(jí)數(shù)學(xué)上冊(cè) 期末應(yīng)試技巧卷(一)(人教版)
- 2024裝飾材料買賣協(xié)議細(xì)則
- 郵政行測(cè)題庫(kù)2024
- 《紀(jì)念白求恩》專題探究課件(敘議結(jié)合理思路)
- 腹腔鏡手術(shù)操作技巧
- 品牌礦泉水物質(zhì)表
- 2024年中國(guó)移動(dòng)重慶分公司招聘筆試參考題庫(kù)含答案解析
- 污水源熱泵方案
- QCT 1037-2016 道路車輛用高壓電纜
- 現(xiàn)代交換原理與通信網(wǎng)技
- 全科醫(yī)生臨床常見病門急診病歷模板(范例)
- GH/T 1421-2023野生食用菌保育促繁技術(shù)規(guī)程塊菌(松露)
- 商業(yè)綜合體停車收費(fèi)管理詳細(xì)規(guī)定
評(píng)論
0/150
提交評(píng)論