下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、圓錐曲線1.圓錐曲線的兩定義:第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時,軌跡是線段FF,當(dāng)常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與|FF|不可忽視。若|FF|,則軌跡是以F,F(xiàn)為端點的兩條射線,若|FF|,則軌跡不存在。若去掉定義中的絕對值則軌跡僅表示雙曲線的一支。如方程表示的曲線是_(答:雙曲線的左支)2.圓錐曲線的標(biāo)準(zhǔn)方程(標(biāo)準(zhǔn)方程是指中心(頂點)在原點,坐標(biāo)軸為對稱軸時的標(biāo)準(zhǔn)位置的方程):(1)橢圓:焦點在軸上時(),焦點在軸上時1()
2、。方程表示橢圓的充要條件是什么?(ABC0,且A,B,C同號,AB)。 若,且,則的最大值是_,的最小值是_(答:)(2)雙曲線:焦點在軸上: =1,焦點在軸上:1()。方程表示雙曲線的充要條件是什么?(ABC0,且A,B異號)。如設(shè)中心在坐標(biāo)原點,焦點、在坐標(biāo)軸上,離心率的雙曲線C過點,則C的方程為_(答:)(3)拋物線:開口向右時,開口向左時,開口向上時,開口向下時。3.圓錐曲線焦點位置的判斷(首先化成標(biāo)準(zhǔn)方程,然后再判斷):(1)橢圓:由,分母的大小決定,焦點在分母大的坐標(biāo)軸上。如已知方程表示焦點在y軸上的橢圓,則m的取值范圍是_(答:)(2)雙曲線:由,項系數(shù)的正負(fù)決定,焦點在系數(shù)為正
3、的坐標(biāo)軸上;(3)拋物線:焦點在一次項的坐標(biāo)軸上,一次項的符號決定開口方向。提醒:在橢圓中,最大,在雙曲線中,最大,。4.圓錐曲線的幾何性質(zhì):(1)橢圓(以()為例):范圍:;焦點:兩個焦點;對稱性:兩條對稱軸,一個對稱中心(0,0),四個頂點,其中長軸長為2,短軸長為2;準(zhǔn)線:兩條準(zhǔn)線; 離心率:,橢圓,越小,橢圓越圓;越大,橢圓越扁。如(1)若橢圓的離心率,則的值是_(答:3或);(2)以橢圓上一點和橢圓兩焦點為頂點的三角形的面積最大值為1時,則橢圓長軸的最小值為_(答:)(2)雙曲線(以()為例):范圍:或;焦點:兩個焦點;對稱性:兩條對稱軸,一個對稱中心(0,0),兩個頂點,其中實軸長
4、為2,虛軸長為2,特別地,當(dāng)實軸和虛軸的長相等時,稱為等軸雙曲線,其方程可設(shè)為;準(zhǔn)線:兩條準(zhǔn)線; 離心率:,雙曲線,等軸雙曲線,越小,開口越小,越大,開口越大;兩條漸近線:。(3)拋物線(以為例):范圍:;焦點:一個焦點,其中的幾何意義是:焦點到準(zhǔn)線的距離;對稱性:一條對稱軸,沒有對稱中心,只有一個頂點(0,0);準(zhǔn)線:一條準(zhǔn)線; 離心率:,拋物線。如設(shè),則拋物線的焦點坐標(biāo)為_(答:);5、點和橢圓()的關(guān)系:(1)點在橢圓外;(2)點在橢圓上1;(3)點在橢圓內(nèi)6直線與圓錐曲線的位置關(guān)系:(1)相交:直線與橢圓相交; 直線與雙曲線相交,但直線與雙曲線相交不一定有,當(dāng)直線與雙曲線的漸近線平行時
5、,直線與雙曲線相交且只有一個交點,故是直線與雙曲線相交的充分條件,但不是必要條件;直線與拋物線相交,但直線與拋物線相交不一定有,當(dāng)直線與拋物線的對稱軸平行時,直線與拋物線相交且只有一個交點,故也僅是直線與拋物線相交的充分條件,但不是必要條件。(2)相切:直線與橢圓相切;直線與雙曲線相切;直線與拋物線相切;(3)相離:直線與橢圓相離;直線與雙曲線相離;直線與拋物線相離。提醒:(1)直線與雙曲線、拋物線只有一個公共點時的位置關(guān)系有兩種情形:相切和相交。如果直線與雙曲線的漸近線平行時,直線與雙曲線相交,但只有一個交點;如果直線與拋物線的軸平行時,直線與拋物線相交,也只有一個交點;(2)過雙曲線1外一
6、點的直線與雙曲線只有一個公共點的情況如下:P點在兩條漸近線之間且不含雙曲線的區(qū)域內(nèi)時,有兩條與漸近線平行的直線和分別與雙曲線兩支相切的兩條切線,共四條;P點在兩條漸近線之間且包含雙曲線的區(qū)域內(nèi)時,有兩條與漸近線平行的直線和只與雙曲線一支相切的兩條切線,共四條;P在兩條漸近線上但非原點,只有兩條:一條是與另一漸近線平行的直線,一條是切線;P為原點時不存在這樣的直線;(3)過拋物線外一點總有三條直線和拋物線有且只有一個公共點:兩條切線和一條平行于對稱軸的直線。7、焦點三角形(橢圓或雙曲線上的一點與兩焦點所構(gòu)成的三角形)問題: ,當(dāng)即為短軸端點時,的最大值為bc;對于雙曲線。 如 (1)短軸長為,練
7、習(xí):點P是雙曲線上上一點,為雙曲線的兩個焦點,且=24,求的周長。8、拋物線中與焦點弦有關(guān)的一些幾何圖形的性質(zhì):(1)以過焦點的弦為直徑的圓和準(zhǔn)線相切;(2)設(shè)AB為焦點弦, M為準(zhǔn)線與x軸的交點,則AMFBMF;(3)設(shè)AB為焦點弦,A、B在準(zhǔn)線上的射影分別為A,B,若P為AB的中點,則PAPB;(4)若AO的延長線交準(zhǔn)線于C,則BC平行于x軸,反之,若過B點平行于x軸的直線交準(zhǔn)線于C點,則A,O,C三點共線。9、 弦長公式:若直線與圓錐曲線相交于兩點A、B,且分別為A、B的橫坐標(biāo),則,若分別為A、B的縱坐標(biāo),則,若弦AB所在直線方程設(shè)為,則。特別地,焦點弦(過焦點的弦):焦點弦的弦長的計算
8、,一般不用弦長公式計算,而是將焦點弦轉(zhuǎn)化為兩條焦半徑之和后,利用第二定義求解。10、圓錐曲線的中點弦問題:遇到中點弦問題常用“韋達(dá)定理”或“點差法”求解。在橢圓中,以為中點的弦所在直線的斜率k=;弦所在直線的方程: 垂直平分線的方程:在雙曲線中,以為中點的弦所在直線的斜率k=;在拋物線中,以為中點的弦所在直線的斜率k=。提醒:因為是直線與圓錐曲線相交于兩點的必要條件,故在求解有關(guān)弦長、對稱問題時,務(wù)必別忘了檢驗!11了解下列結(jié)論(1)雙曲線的漸近線方程為;(2)以為漸近線(即與雙曲線共漸近線)的雙曲線方程為為參數(shù),0)。(3)中心在原點,坐標(biāo)軸為對稱軸的橢圓、雙曲線方程可設(shè)為;(4)橢圓、雙曲
9、線的通徑(過焦點且垂直于對稱軸的弦)為,焦準(zhǔn)距(焦點到相應(yīng)準(zhǔn)線的距離)為,拋物線的通徑為,焦準(zhǔn)距為; (5)通徑是所有焦點弦(過焦點的弦)中最短的弦;(6)若拋物線的焦點弦為AB,則;(7)若OA、OB是過拋物線頂點O的兩條互相垂直的弦,則直線AB恒經(jīng)過定點12.圓錐曲線中線段的最值問題:例1、(1)拋物線C:y2=4x上一點P到點A(3,4)與到準(zhǔn)線的距離和最小,則點 P的坐標(biāo)為_ (2)拋物線C: y2=4x上一點Q到點B(4,1)與到焦點F的距離和最小,則點Q的坐標(biāo)為 。分析:(1)A在拋物線外,如圖,連PF,則,因而易發(fā)現(xiàn),當(dāng)A、P、F三點共線時,距離和最小。(2) B在拋物線內(nèi),如圖
10、,作QRl交于R,則當(dāng)B、Q、R三點共線時,距離和最小。 解:(1)(2,)(2)()1、已知橢圓C1的方程為,雙曲線C2的左、右焦點分別為C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點。 (1) 求雙曲線C2的方程; (2) 若直線l:與橢圓C1及雙曲線C2恒有兩個不同的交點,且l與C2的兩個交點A和B滿足(其中O為原點),求k的取值范圍。解:()設(shè)雙曲線C2的方程為,則故C2的方程為(II)將由直線l與橢圓C1恒有兩個不同的交點得即 .由直線l與雙曲線C2恒有兩個不同的交點A,B得 解此不等式得 由、得故k的取值范圍為2、在平面直角坐標(biāo)系xOy中,已知點A(0,-1),B點在直
11、線y = -3上,M點滿足MB/OA, MAAB = MBBA,M點的軌跡為曲線C。()求C的方程;()P為C上的動點,l為C在P點處得切線,求O點到l距離的最小值。()設(shè)M(x,y),由已知得B(x,-3),A(0,-1).所以=(-x,-1-y), =(0,-3-y), =(x,-2).再由愿意得知(+)=0,即(-x,-4-2y)(x,-2)=0.所以曲線C的方程式為y=x-2. ()設(shè)P(x,y)為曲線C:y=x-2上一點,因為y=x,所以的斜率為x因此直線的方程為,即。則O點到的距離.又,所以當(dāng)=0時取等號,所以O(shè)點到距離的最小值為2.3設(shè)雙曲線(a0,b0)的漸近線與拋物線y=x2 +1相切,則該雙曲線的離心率等于( )4、過橢圓()的左焦點作軸的垂線交橢圓于點,為右焦點,若,則橢圓的離心率為5、已知雙曲線的左、右焦點分別是、,其一條漸近線方程為,點在雙曲線上.則( )06、已知直線與拋物線相交于兩點,為的焦點,若,則( )7、已知直線和直線,拋物線上一動點到直線和直線的距離之和的最小值是( )8、設(shè)已知拋物線C的頂點在坐標(biāo)原點,焦點為F(1,0),直線l與拋物線C相交于A,B兩點。若AB的中點為(2,2),則直線l的方程為_.9、橢圓的焦點為,點P在橢圓上,若,則 ;的大小為 .10、過拋物線的焦點F作傾斜角為的直線交拋物線于A、B兩點,若線段AB的長為8,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲服務(wù)與經(jīng)營管理承包協(xié)議2024
- 2024年湖南客運應(yīng)用能力考試答案
- 2024年許昌客運資格證題庫及答案
- 2023屆新高考化學(xué)選考一輪總復(fù)習(xí)訓(xùn)練-第32講 生物大分子 合成高分子
- 2023屆新高考化學(xué)選考一輪總復(fù)習(xí)學(xué)案-熱點13 酸堿中和滴定及其拓展應(yīng)用
- 2024年工程項目勞務(wù)分包專用合同
- 2024銷售代理協(xié)作協(xié)議樣本
- 2024年個人代理貸款合同
- 2024年度企業(yè)融資支持協(xié)議
- 船長招聘筆試題及解答(某大型集團(tuán)公司)2024年
- 浮動碼頭施工方案
- Poka-Yoke防錯技術(shù)(完整版)
- 保安交接班記錄表(2)
- 神明—EZflame火焰檢測系統(tǒng)
- 個人簡歷求職簡歷課件.ppt
- 2018年江蘇高考滿分作文:在母語的屋檐下
- 新青島版五四制2021-2022四年級科學(xué)上冊實驗指導(dǎo)
- 小學(xué)四年級音樂課程標(biāo)準(zhǔn)
- 民用機(jī)場竣工驗收質(zhì)量評定標(biāo)準(zhǔn)
- 雙向細(xì)目表和單元測試卷及組卷說明
- 離子色譜法測定空氣中二氧化硫
評論
0/150
提交評論