下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、二次函數(shù)圖象的幾何變換內(nèi)容基本要求略高要求較高要求二次函數(shù)1. 能根據(jù)實(shí)際情境了解二次函數(shù)的意義;2. 會(huì)利用描點(diǎn)法畫出二次函數(shù)的圖像;1. 能通過對(duì)實(shí)際問題中的情境分析確定二次函數(shù)的表達(dá)式;2. 能從函數(shù)圖像上認(rèn)識(shí)函數(shù)的性質(zhì);3. 會(huì)確定圖像的頂點(diǎn)、對(duì)稱軸和開口方向;4. 會(huì)利用二次函數(shù)的圖像求出二次方程的近似解;1. 能用二次函數(shù)解決簡(jiǎn)單的實(shí)際問題;2. 能解決二次函數(shù)與其他知識(shí)結(jié)合的有關(guān)問題;中考要求3一、二次函數(shù)圖象的平移變換(1) 具體步驟:先利用配方法把二次函數(shù)化成 y = a(x - h)2 + k 的形式,確定其頂點(diǎn)(h, k ) ,然后做出二次函數(shù)y = ax2 的圖像,將拋
2、物線 y = ax2 平移,使其頂點(diǎn)平移到(h, k ) .具體平移方法如圖所示:(2) 平移規(guī)律:在原有函數(shù)的基礎(chǔ)上“左加右減”.二、二次函數(shù)圖象的對(duì)稱變換二次函數(shù)圖象的對(duì)稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá)1. 關(guān)于 x 軸對(duì)稱y = ax2 + bx + c 關(guān)于 x 軸對(duì)稱后,得到的解析式是 y = -ax2 - bx - c ; y = a (x - h)2 + k 關(guān)于 x 軸對(duì)稱后,得到的解析式是 y = -a (x - h)2 - k ;2. 關(guān)于 y 軸對(duì)稱y = ax2 + bx + c 關(guān)于 y 軸對(duì)稱后,得到的解析式是 y = ax2 - bx + c ; y =
3、 a (x - h)2 + k 關(guān)于 y 軸對(duì)稱后,得到的解析式是 y = a (x + h)2 + k ;3. 關(guān)于原點(diǎn)對(duì)稱y = ax2 + bx + c 關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是 y = -ax2 + bx - c ; y = a (x - h)2 + k 關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是 y = -a (x + h)2 - k ;4. 關(guān)于頂點(diǎn)對(duì)稱b2y = ax2 + bx + c 關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是 y = -ax2 - bx + c - ;2ay = a (x - h)2 + k 關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是 y = -a (x - h)2 + k 5. 關(guān)于點(diǎn)
4、(m 、 n)對(duì)稱y = a (x - h)2 + k 關(guān)于點(diǎn)(m 、 n)對(duì)稱后,得到的解析式是 y = -a (x + h - 2m)2 + 2n - k根據(jù)對(duì)稱的性質(zhì),顯然無論作何種對(duì)稱變換,拋物線的形狀一定不會(huì)發(fā)生變化,因此 a 永遠(yuǎn)不變求拋物線的對(duì)稱拋物線的表達(dá)式時(shí),可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開口方向,再確定其對(duì)稱拋物線的頂點(diǎn)坐標(biāo)及開口方向, 然后再寫出其對(duì)稱拋物線的表達(dá)式二次函數(shù)圖象的平移變換練習(xí)1、函數(shù) y = 3(x + 2)2 - 1 的圖象可由函數(shù) y = 3x2 的圖象平移得到,那么平移的步驟是
5、:( )a. 右移兩個(gè)單位,下移一個(gè)單位c. 左移兩個(gè)單位,下移一個(gè)單位b. 右移兩個(gè)單位,上移一個(gè)單位d. 左移兩個(gè)單位,上移一個(gè)單位2、函數(shù) y = -2(x - 1)2 - 1 的圖象可由函數(shù) y = -2(x + 2)2 + 3 的圖象平移得到,那么平移的步驟是()a. 右移三個(gè)單位,下移四個(gè)單位c. 左移三個(gè)單位,下移四個(gè)單位b. 右移三個(gè)單位,上移四個(gè)單位d. 左移四個(gè)單位,上移四個(gè)單位3、二次函數(shù) y = -2x2 + 4x + 1 的圖象如何移動(dòng)就得到 y = -2x2 的圖象()a. 向左移動(dòng)1 個(gè)單位,向上移動(dòng)3 個(gè)單位. b. 向右移動(dòng)1 個(gè)單位,向上移動(dòng)3 個(gè)單位.c.
6、 向左移動(dòng)1 個(gè)單位,向下移動(dòng)3 個(gè)單位. d. 向右移動(dòng)1 個(gè)單位,向下移動(dòng)3 個(gè)單位.4、將函數(shù) y = x2 + x 的圖象向右平移 a (a 0)個(gè)單位,得到函數(shù) y = x2 - 3x + 2 的圖象,則 a 的值為( )a.1b. 2c. 3d. 45、把拋物線 y = ax2 + bx + c 的圖象先向右平移3 個(gè)單位,再向下平移2 個(gè)單位,所得的圖象的解析式是y = x2 - 3x + 5 ,則 a + b + c =6、對(duì)于每個(gè)非零自然數(shù) n ,拋物線 y = x2 - 2n +1 x +1與 x 軸交于 a 、b 兩點(diǎn),以 a b 表示這兩點(diǎn)間的距離,則 a1b1+ a2
7、b2 +n(n +1)+ a2009 b2009 的值是( )n(n +1)nnn na 20092008b 20082009c 20102009d 200920107、把拋物線 y = -x2 向左平移1 個(gè)單位,然后向上平移3 個(gè)單位,則平移后拋物線的解析式為a y = -(x -1)2 - 3()y = - x -1 2 + 3cb y = -(x +1)2 - 3()y = - x +1 2 + 3d8、將拋物線 y = 2x2 向下平移1 個(gè)單位,得到的拋物線是()a. 2y = 2(x +1)by = 2(x -1)2c y = 2x2 +1d y = 2x2 -19、將拋物線 y
8、 = 3x2 向上平移2 個(gè)單位,得到拋物線的解析式是( )a. y = 3x2 - 2b. y = 3x2c. y = 3(x + 2)2d. y = 3x2 + 210、一拋物線向右平移3 個(gè)單位,再向下平移2 個(gè)單位后得拋物線 y = -2x2 + 4x ,則平移前拋物線的解析式為11、如圖, a abcd 中, ab = 4 ,點(diǎn) d 的坐標(biāo)是(0 , 8) ,以點(diǎn)c 為頂點(diǎn)的拋物線 y = ax2 + bx + c 經(jīng)過 x 軸上的點(diǎn) a , b 求點(diǎn) a , b , c 的坐標(biāo)若拋物線向上平移后恰好經(jīng)過點(diǎn) d ,求平移后拋物線的解析式dcoab12、已知二次函數(shù) y = x2 -
9、2x -1 ,求:關(guān)于 x 軸對(duì)稱的二次函數(shù)解析式;關(guān)于 y 軸對(duì)稱的二次函數(shù)解析式;關(guān)于原點(diǎn)對(duì)稱的二次函數(shù)解析式13、函數(shù) y = x2 與 y = -x2 的圖象關(guān)于對(duì)稱,也可以認(rèn)為 y = x2 是函數(shù) y = -x2 的圖象繞 旋轉(zhuǎn)得到14、在平面直角坐標(biāo)系中,先將拋物線 y = x2 + x - 2 關(guān)于 x 軸作軸對(duì)稱變換,再將所得的拋物線關(guān)于 y 軸作軸對(duì)稱變換,那么經(jīng)兩次變換后所得的新拋物線的解析式為a y = -x2 - x + 2 c y = -x2 + x + 2b y = -x2 + x - 2d y = x2 + x + 2“”“”at the end, xiao b
10、ian gives you a passage. minand once said, people who learn to learn are very happy people. in every wonderful life, learning is an eternal theme. as a professional clerical and teaching position, i understand the importance of continuous learning, life is diligent, nothing can be gained, only continuous learning can achieve better self. only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to me
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度不動(dòng)產(chǎn)登記權(quán)籍調(diào)查與測(cè)繪合同3篇
- 2025年度智能廚房系統(tǒng)研發(fā)與實(shí)施合同3篇
- 2025年度車輛抵押借款合同電子版年度更新版8篇
- 二零二五年度車輛事故理賠信息平臺(tái)建設(shè)服務(wù)合同4篇
- 2025【合同范本】建筑股東合作協(xié)議書
- 2025年度茶文化推廣活動(dòng)專用茶具租賃合同4篇
- 二零二四年度醫(yī)療單位前臺(tái)聘用合同范本2篇
- 二零二五年度詞曲制作與戶外活動(dòng)主題曲創(chuàng)作合同4篇
- 二零二五年度車輛租賃押金退還細(xì)則合同3篇
- 2025年鋼廠爐渣再生資源綜合利用合同范本2篇
- 電工中級(jí)工練習(xí)題庫(含參考答案)
- 學(xué)校幫扶工作計(jì)劃
- 期末綜合試卷(試題)2024-2025學(xué)年人教版數(shù)學(xué)五年級(jí)上冊(cè)(含答案)
- UL2034標(biāo)準(zhǔn)中文版-2017一氧化碳報(bào)警器UL中文版標(biāo)準(zhǔn)
- 感恩的心培訓(xùn)資料
- 《精密板料矯平機(jī) 第3部分:精度》
- (完整版)水利部考試歷年真題-水利基礎(chǔ)知識(shí)試題集
- 浙江省杭州市2024-2025學(xué)年高三上學(xué)期一模英語試題(含解析無聽力原文及音頻)
- 2024年廣東省公務(wù)員考試《行測(cè)》真題及答案解析
- 個(gè)人頂賬房合同范例
- 安徽省淮南四中2025屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析
評(píng)論
0/150
提交評(píng)論