相似三角形基本知識點+經(jīng)典例題(完美打印版),推薦文檔_第1頁
相似三角形基本知識點+經(jīng)典例題(完美打印版),推薦文檔_第2頁
相似三角形基本知識點+經(jīng)典例題(完美打印版),推薦文檔_第3頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、相似三角形知識點與經(jīng)典題型知識點1有關相似形的概念(1) 形狀相同的圖形叫相似圖形,在相似多邊形中,最簡單的是相似三角形.(2) 如果兩個邊數(shù)相同的多邊形的對應角相等,對應邊成比例,這兩個多邊形叫做相似多邊形相似多邊形對應邊長度的比叫做相似比(相似系數(shù))知識點2比例線段的相關概念(1) 如果選用同一單位量得兩條線段 a, b 的長度分別為 m, n ,那么就說這兩條線段的比是 ab成 a : b = m : n 注:在求線段比時,線段單位要統(tǒng)一。m= ,或?qū)憂(2) 在四條線段 a, b, c, d 中,如果 a和b 的比等于c和d 的比,那么這四條線段 a, b, c, d 叫做成比例線段,

2、簡稱比例線段注:比例線段是有順序的,如果說 a 是b, c, d 的第四比例項,那么應得比例式為:b = d 在比例式:a := c中(,ab = cd )a、d 叫比例外項,b、c 叫比例內(nèi)項, a、c 叫比例前項,cabdb、d 叫比例后項,d 叫第四比例項,如果 b=c,即b2 = ad 。a:= bd 那么 b 叫做 a、d 的比例中項, 此時有5 - 15 -15 -1(3) 黃金分割:把線段 ab 分成兩條線段 ac, bc( ac bc) ,且使 ac 是 ab和bc 的比例中項,即ac 2 = ab bc ,叫做把線段 ab 黃金分割,點c 叫做線段 ab 的黃金分割點,其中a

3、c =ab 0.618 ab 即 ac = bc =2abac2長短簡記為:全長2注:黃金三角形:頂角是 360 的等腰三角形。黃金矩形:寬與長的比等于黃金數(shù)的矩形知識點3比例的性質(zhì)(注意性質(zhì)立的條件:分母不能為0)(1) 基本性質(zhì): a : b = c : d ad = bc ; a : b = b : c b2 = a c 注:由一個比例式只可化成一個等積式,而一個等積式共可化成八個比例式,如 ad = bc ,除了可化為 a : b = c : d ,還可化為 a : c = b : d ,c : d = a : b , b : d = a : c , b : a = d : c , c

4、 : a = d : b , d : c = b : a , d : b = c : a a = b ,( 交換內(nèi)項) cdac dc(2) 更比性質(zhì)(交換比例的內(nèi)項或外項): b = d b = a ,( 交換外項) db=( 同時交換內(nèi)外項) caacbd(3) 反比性質(zhì)(把比的前項、后項交換):= = bdac(4) 合、分比性質(zhì): a = c a b = c d bdbd注:實際上,比例的合比性質(zhì)可擴展為:比例式中等號左右兩個比的前項,后項之間=b - ad - c ac ac 等等發(fā)生同樣和差變化比例仍成立如: b = d a - b a + bc - d= c + d(5) 等比性

5、質(zhì):如果 a = c= e = l = m (b + d + f +l + n 0)a + c + e +l + m = a ,那么bdfn注:b + d + f +l + nb此性質(zhì)的證明運用了“設 k 法”(即引入新的參數(shù) k)這樣可以減少未知數(shù)的個數(shù),這種方法是有關比例計算變形中一種常用方法應用等比性質(zhì)時,要考慮到分母是否為零可利用分式性質(zhì)將連等式的每一個比的前項與后項同時乘以一個數(shù),再利用等比性質(zhì)也成立如:ea- 2c3ea - 2c +3e = a ;其中b - 2d + 3 fa = c = 0 bdfb- 2d3 fb - 2d + 3 fb知識點 4比例線段的有關定理1. 三角

6、形中平行線分線段成比例定理:平行于三角形一邊的直線截其它兩邊(或兩邊的延長線)所得的對應線段成比例.adeadae 或 bd = ec 或 ad = ae由 debc 可得:db= ecad eaabac注:bc重要結論:平行于三角形的一邊,并且和其它兩邊相交的直線,所截的三角形的三邊與原三角形三邊對應成比例.三角形中平行線分線段成比例定理的逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例.那么這條直線平行于三角形的第三邊.此定理給出了一種證明兩直線平行方法,即:利用比例式證平行線.平行線的應用:在證明有關比例線段時,輔助線往往做平行線,但應遵循的原則是不要破壞條件中的

7、兩條線段的比及所求的兩條線段的比.adbecf2. 平行線分線段成比例定理:三條平行線截兩條直線,所截得的對應線段成比例.已知 adbecf,abdeabdebcefbcefabbc可得=或或或=或=等.bcefacdfabdeacdfdeef注:平行線分線段成比例定理的推論:平行線等分線段定理:兩條直線被三條平行線所截,如果在其中一條上截得的線段相等,那么在另一條上截得的線段也相等。知識點 5相似三角形的概念對應角相等,對應邊成比例的三角形,叫做相似三角形相似用符號“”表示,讀作“相似于” 相似三角形對應邊的比叫做相似比(或相似系數(shù))相似三角形對應角相等,對應邊成比例注:對應性:即兩個三角形

8、相似時,一定要把表示對應頂點的字母寫在對應位置上,這樣寫比較容易找到相似三角形的對應角和對應邊 順序性:相似三角形的相似比是有順序的兩個三角形形狀一樣,但大小不一定一樣全等三角形是相似比為 1 的相似三角形二者的區(qū)別在于全等要求對應邊相等,而相似要求對應邊成比例知識點 6三角形相似的等價關系與三角形相似的判定定理的預備定理(1) 相似三角形的等價關系:反身性:對于任一dabc 有dabc dabc 對稱性:若dabc da bc,則da bc dabc 傳遞性:若dabc da bc,且da bc da bc ,則dabc da bc(2) 三角形相似的判定定理的預備定理:平行于三角形一邊的直

9、線和其它兩邊(或兩邊延長線)相交,所構成的三角形與原三角形相似bc定理的基本圖形:aeac(3)addecb(1)d(2)eb用數(shù)學語言表述是:q de / bc ,知識點 7三角形相似的判定方法dade dabc 1、定義法:三個對應角相等,三條對應邊成比例的兩個三角形相似2、平行法:平行于三角形一邊的直線和其它兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似3、判定定理 1:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似簡述為:兩角對應相等,兩三角形相似4、判定定理 2:如果一個三角形的兩條邊與另一個三角形的兩條邊對應成比例,并且夾角相等,那么這兩個三角

10、形相似簡述為:兩邊對應成比例且夾角相等,兩三角形相似 5、判定定理 3:如果一個三角形的三條邊與另一個三角形的三條邊對應成比例,那么這兩個三角形相似簡述為:三邊對應成比例,兩三角形相似6、判定直角三角形相似的方法:(1) 以上各種判定均適用(2) 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似(3) 直角三角形被斜邊上的高分成的兩個直角三角形與原三角形相似注:射影定理:在 直角三角形中,斜邊上的高是兩直角邊在斜邊上射影的 比例中項。每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項。a如圖, rtabc 中, bac=90,ad

11、 是斜邊 bc 上的高,則 ad2=bddc,ab2=bdbc ,ac2=cdbc 。相似三角形常見的圖形bd知識點 8c1、下面我們來看一看相似三角形的幾種基本圖形:(1) 如圖:稱為“平行線型”的相似三角形(有“a 型”與“x 型”圖)abcadeeac(3)dcb(1)d(2)eb(2)如圖:其中1=2,則adeabc 稱為“斜交型”的相似三角形。(有“反 a 共角型”、“反 a 共角共邊型”、 “蝶型”)e212e4 (3) 如圖:稱為“垂直型”(有“雙垂直共角型”、“雙垂直共角共邊型(也稱“射影定理型 ”)”“三垂直型”)eeaaebdacdbcc(d)b (4)如圖:1=2,b=d

12、,則adeabc,稱為“旋轉(zhuǎn)型”的相似三角形。2、幾種基本圖形的具體應用:(1) 若 debc(a 型和 x 型)則adeabc(2) 射影定理 若 cd 為 rtabc 斜邊上的高(雙直角圖形)則 rtabcrtacdrtcbd 且 ac2=adab,cd2=adbd,bc2=bdab;aadeedcbcbcad b(3) 滿足 1、ac2=adab,2、acd=b,3、acb=adc,都可判定adcacbadae(4) 當=或 adab=acae 時,adeacbacabdadeabcbc知識點 9:全等與相似的比較:三角形全等三角形相似兩角夾一邊對應相等(asa) 兩角一對邊對應相等(a

13、as) 兩邊及夾角對應相等(sas) 三邊對應相等(sss)直角三角形中一直角邊與斜邊對應相等(hl)相似判定的預備定理兩角對應相等兩邊對應成比例,且夾角相等三邊對應成比例直角三角形中斜邊與一直角邊對應成比例知識點 10相似三角形的性質(zhì)(1) 相似三角形對應角相等,對應邊成比例(2) 相似三角形對應高的比,對應中線的比和對應角平分線的比都等于相似比(3) 相似三角形周長的比等于相似比(4) 相似三角形面積的比等于相似比的平方注:相似三角形性質(zhì)可用來證明線段成比例、角相等,也可用來計算周長、邊長等知識點 11 相似三角形中有關證(解)題規(guī)律與輔助線作法1、證明四條線段成比例的常用方法:(1) 線

14、段成比例的定義(2) 三角形相似的預備定理(3)利用相似三角形的性質(zhì) (4)利用中間比等量代換(5)利用面積關系2、證明題常用方法歸納:(1)總體思路:“等積”變“比例”,“比例”找“相似”(2) 找相似:通過“橫找”“豎看”尋找三角形,即橫向看或縱向?qū)ふ业臅r候一共各有三個不同的字母,并且這幾個字母不在同一條直線上,能夠組成三角形,并且有可能是相似的, 則可證明這兩個三角形相似,然后由相似三角形對應邊成比例即可證的所需的結論.(3) 找中間比:若沒有三角形(即橫向看或縱向?qū)ふ业臅r候一共有四個字母或者三個字母,但這幾個字母在同一條直線上),則需要進行“轉(zhuǎn)移”(或“替換”),常用的“替換”方法有這

15、樣的三種:等線段代換、等比代換、等積代換.即:找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來。a m cm mam c=,=(為中間比) =,= m , n = nb n dnnam cmbn dnmm= , =(m = m , n = n 或 =)bn dnnn(4) 添加輔助線:若上述方法還不能奏效的話,可以考慮添加輔助線(通常是添加平行線)構成比例.以上步驟可以不斷的重復使用,直到被證結論證出為止.注:添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。平面直角坐標系中通常是作垂線(即得平行線)構造相似三角形或比例線段。(5)比例問題:常用處理方法是將“一份”看著 k;對于等

16、比問題,常用處理辦法是設“公比”為 k。(6)對于復雜的幾何圖形,通常采用將部分需要的圖形(或基本圖形)“分離”出來的辦法處理。知識點 12相似多邊形的性質(zhì)(1) 相似多邊形周長比,對應對角線的比都等于相似比(2) 相似多邊形中對應三角形相似,相似比等于相似多邊形的相似比(3) 相似多邊形面積比等于相似比的平方注意:相似多邊形問題往往要轉(zhuǎn)化成相似三角形問題去解決,因此,熟練掌握相似三角形知識是基礎和關鍵知識點 13位似圖形有關的概念與性質(zhì)及作法1. 如果兩個圖形不僅是相似圖形,而且每組對應頂點的連線都交于一點,那么這樣的兩個圖形叫做位似圖形.2. 這個點叫做位似中心,這時的相似比又稱為位似比.

17、注:(1) 位似圖形是相似圖形的特例,位似圖形不僅相似,而且對應頂點的連線相交于一點.(2) 位似圖形一定是相似圖形,但相似圖形不一定是位似圖形.(3) 位似圖形的對應邊互相平行或共線.3. 位似圖形的性質(zhì): 位似圖形上任意一對對應點到位似中心的距離之比等于相似比.注:位似圖形具有相似圖形的所有性質(zhì).4. 畫位似圖形的一般步驟:(1) 確定位似中心(位似中心可以是平面中任意一點)(2) 分別連接原圖形中的關鍵點和位似中心,并延長(或截?。?(3) 根據(jù)已知的位似比,確定所畫位似圖形中關鍵點的位置.(4) 順次連結上述得到的關鍵點,即可得到一個放大或縮小的圖形. 注:位似中心可以是平面內(nèi)任意一點

18、,該點可在圖形內(nèi),或在圖形外,或在圖形上(圖形邊上或頂點上)。外位似:位似中心在連接兩個對應點的線段之外,稱為“外位似”(即同向位似圖形)內(nèi)位似:位似中心在連接兩個對應點的線段上,稱為“內(nèi)位似”(即反向位似圖形)(5) 在平面直角坐標系中,如果位似變換是以原點o為位似中心,相似比為k(k0),原圖形上點的坐標為(x,y),那么同向位似圖形對應點的坐標為(kx,ky), 反向位似圖形對應點的坐標為(-kx,-ky),經(jīng)典例題透析類型一、相似三角形的概念1. 判斷對錯:(1)兩個直角三角形一定相似嗎?為什么? (2)兩個等腰三角形一定相似嗎?為什么?(3)兩個等腰直角三角形一定相似嗎?為什么? (

19、4)兩個等邊三角形一定相似嗎?為什么?(5)兩個全等三角形一定相似嗎?為什么?思路點撥:要說明兩個三角形相似,要同時滿足對應角相等,對應邊成比例.要說明不相似,則只要否定其中的一個條件.解:(1)不一定相似.反例直角三角形只確定一個直角,其他的兩對角可能相等,也可能不相等.所以直角三角形不一定相似.(2) 不一定相似.反例等腰三角形中只有兩邊相等,而底邊不固定.因此兩個等腰三角形中有兩邊對應成比例,兩底邊的比不一定等于對應腰的比,所以等腰三角形不一定相似.(3) 一定相似.在直角三角形 abc 與直角三角形 abc中設 ab=a, ab=b,則 bc=a,bc=b,ac=a,ac=b abc

20、abc(4) 一定相似.因為等邊三角形各邊都相等,各角都等于 60 度,所以兩個等邊三角形對應角相等,對應邊成比例,因此兩個等邊三角形一定相似.(5) 一定相似.全等三角形對應角相等,對應邊相等,所以對應邊比為 1,所以全等三角形一定相似,且相似比為 1.舉一反三【變式 1】兩個相似比為 1 的相似三角形全等嗎?解析:全等.因為這兩個三角形相似,所以對應角相等.又相似比為 1,所以對應邊相等.因此這兩個三角形全等.總結升華:由上可知,在特殊的三角形中,有的相似,有的不一定相似. (1)兩個直角三角形,兩個等腰三角形不一定相似.(2) 兩個等腰直角三角形,兩個等邊三角形一定相似.(3) 兩個全等

21、三角形一定相似,且相似比為 1;相似比為 1 的兩個相似三角形全等.【變式 2】下列能夠相似的一組三角形為( )a.所有的直角三角形b.所有的等腰三角形c.所有的等腰直角三角形d.所有的一邊和這邊上的高相等的三角形解析:根據(jù)相似三角形的概念,判定三角形是否相似,一定要滿足三個角對應相等,三條對應邊的比相等. 而 a 中只有一組直角相等,其他的角是否對應相等不可知;b 中什么條件都不滿足;d 中只有一條對應邊的比相等;c 中所有三角形都是由 90、45、45角組成的三角形,且對應邊的比也相等.答案選 c.類型二、相似三角形的判定2. 如圖所示,已知中,e 為 ab 延長線上的一點,ab=3be,

22、de 與 bc 相交于 f,請找出圖中各對相似三角形,并求出相應的相似比.思路點撥:由可知 abcd,adbc,再根據(jù)平行線找相似三角形.解: 四邊形 abcd 是平行四邊形, abcd,adbc, befcdf,befaed. befcdfaed. 當befcdf 時,相似比;當befaed 時,相似比;當cdfaed 時,相似比.總結升華:本題中bef、cdf、aed 都相似,共構成三對相似三角形.求相似比不僅要找準對應邊, 還需注意兩個三角形的先后次序,若次序顛倒,則相似比成為原來的倒數(shù).3. 已知在 rtabc 中,c=90,ab=10,bc=6.在 rtedf 中,f=90,df=3

23、,ef=4,則abc和edf 相似嗎?為什么?思路點撥:已知abc 和edf 都是直角三角形,且已知兩邊長,所以可利用勾股定理分別求出第三邊ac 和 de,再看三邊是否對應成比例.解:在 rtabc 中,ab=10,bc=6,c=90.由勾股定理得.在 rtdef 中,df=3,ef=4,f=90.由勾股定理,得.在abc 和edf 中, abcedf(三邊對應成比例,兩三角形相似).總結升華:(1) 本題易錯為只看 3,6,4,10 四條線段不成比例就判定兩三角形不相似.利用三邊判定兩三角形相似,應看三角形的三邊是否對應成比例,而不是兩邊.(2) 本題也可以只求出 ac 的長,利用兩組對應邊

24、的比相等,且夾角相等,判定兩三角形相似.4. 如圖所示,點 d 在abc 的邊 ab 上,滿足怎樣的條件時,acd 與abc 相似?試分別加以列舉.思路點撥:此題屬于探索問題,由相似三角形的識別方法可知,acd 與abc 已有公共角a,要使此兩個三角形相似,可根據(jù)相似三角形的識別方法尋找一個條件即可.解:當滿足以下三個條件之一時,acdabc.條件一:1=b.條件二:2=acb.條件三:,即.總結升華:本題的探索鑰匙是相似三角形的識別方法.在探索兩個三角形相似時,用分析法,可先假設acdabc,然后尋找兩個三角形中邊的關系或角的關系即可.本題易錯為出現(xiàn)條件四:.不符合條件“最小化”原則,因為條

25、件三能使問題成立,所以出現(xiàn)條件四是錯誤的.舉一反三【變式 1】已知:如圖正方形 abcd 中,p 是 bc 上的點,且 bp=3pc,q 是 cd 的中點求證:adqqcp思路點撥:因adq 與qcp 是直角三角形,雖有相等的直角,但不知 aq 與 pq 是否垂直,所以不能用兩個角對應相等判定而四邊形 abcd 是正方形,q 是 cd 中點,而 bp=3pc,所以可用對應邊成比例夾角相等的方法來判定具體證明過程如下:證明:在正方形 abcd 中,q 是 cd 的中點, =2=3,=4又bc=2dq,=2在adq 和qcp 中,=,c=d=90,adqqcp【變式 2】如圖,弦和弦相交于內(nèi)一點

26、,求證:.思路點撥:題目中求證的是等積式,我們可以轉(zhuǎn)化為比例式,從而找到應證哪兩個三角形相似.同時圓當中同弧或等弧所對的圓周角相等要會靈活應用.證明:連接,.在.【變式 3】已知:如圖,ad 是abc 的高,e、f 分別是 ab、ac 的中點 求證:dfeabc思路點撥:ef 為abc 的中位線,ef=bc,又 de 和 df 都是直角三角形斜邊上的中線,de=ab,df=ac因此考慮用三邊對應成比例的兩個三角形相似證明:在 rtabd 中,de 為斜邊 ab 上的中線, de=ab,即=同理= ef 為abc 的中位線, ef=bc,即= dfeabc總結升華:本題證明方法較多,可先證edf

27、=eda+adf=ead+fad=bac,再證夾這個角的兩邊成比例,即=,也可證明fed=edb=b,同理efd=fdc=c,都可以證出defabc類型三、相似三角形的性質(zhì)5. abcdef,若abc 的邊長分別為 5cm、6cm、7cm,而 4cm 是def 中一邊的長度,你能求出def 的另外兩邊的長度嗎?試說明理由.思路點撥:因沒有說明長 4cm 的線段是def 的最大邊或最小邊,因此需分三種情況進行討論.解:設另兩邊長是 xcm,ycm,且 xy.(1) 當def 中長 4cm 線段與abc 中長 5cm 線段是對應邊時,有,從而 x=cm,y=cm.(2) 當def 中長 4cm 線

28、段與abc 中長 6cm 線段是對應邊時,有,從而 x=cm,y=cm.(3) 當def 中長 4cm 線段與abc 中長 7cm 線段是對應邊時,有,從而 x=cm,y=cm.綜上所述,def 的另外兩邊的長度應是cm,cm 或cm,cm 或cm,cm 三種可能.總結升華:一定要深刻理解“對應”,若題中沒有給出圖形,要特別注意是否有圖形的分類.6. 如圖所示,已知abc 中,ad 是高,矩形 efgh 內(nèi)接于abc 中,且長邊 fg 在 bc 上,矩形相鄰兩邊的比為 1:2,若 bc=30cm,ad=10cm.求矩形 efgh 的面積.思路點撥:利用已知條件及相似三角形的判定方法及性質(zhì)求出矩

29、形的長和寬,從而求出矩形的面積. 解: 四邊形 efgh 是矩形, ehbc, aehabc. adbc, adeh,md=ef. 矩形兩鄰邊之比為 1:2,設 ef=xcm,則 eh=2xcm.由相似三角形對應高的比等于相似比,得,. ef=6cm,eh=12cm.總結升華:解決有關三角形的內(nèi)接矩形、內(nèi)接正方形的計算問題,經(jīng)常利用相似三角形“對應高的比等于相似比”和“面積比等于相似比的平方”的性質(zhì),若圖中沒有高可以先作出高.舉一反三【變式 1】abc 中,debc,m 為 de 中點,cm 交 ab 于 n,若,求.解 :debc ,adeabcm 為 de 中點, dmbc , ndmnb

30、c=1:2.總結升華:圖中有兩個“”字形,已知線段 ad 與 ab 的比和要求的線段 nd 與 nb 的比分別在這兩個“”字形,利用 m 為 de 中點的條件將條件由一個“”字形轉(zhuǎn)化到另一個“”字形,從而解決問題.類型四、相似三角形的應用7. 如圖,我們想要測量河兩岸相對應兩點 a、b 之間的距離(即河寬) ,你有什么方法?方案 1:如上左圖,構造全等三角形,測量 cd,得到 ab=cd,得到河寬.方案 2:思路點撥:這是一道測量河寬的實際問題,還可以借用相似三角形的對應邊的比相等,比例式中四條線段, 測出了三條線段的長,必能求出第四條.如上右圖,先從 b 點出發(fā)與 ab 成 90角方向走 5

31、0m 到 o 處立一標桿,然后方向不變,繼續(xù)向前走 10m 到 c 處,在 c 處轉(zhuǎn) 90,沿 cd 方向再走 17m 到達 d 處,使得 a、o、d 在同一條直線上那么 a、b 之間的距離是多少?解:abbc,cdbcabo=dco=90又 aob=docaobdocbo=50m,co=10m,cd=17mab=85m答:河寬為 85m總結升華:方案 2 利用了“”型基本圖形,實際上測量河寬有很多方法,可以用“”型基本圖形,借助相似;也可用等腰三角形等等.舉一反三【變式 1】如圖:小明欲測量一座古塔的高度,他站在該塔的影子上前后移動,直到他本身影子的頂端正好與塔的影子的頂端重疊,此時他距離該

32、塔 18 m,已知小明的身高是 1.6 m,他的影長是 2 m(1) 圖中abc 與ade 是否相似?為什么? (2)求古塔的高度解:(1)abcadebcae,deaeacb=aed=90a=aabcade(2) 由(1)得abcadeac=2m,ae=2+18=20m,bc=1.6mde=16m答:古塔的高度為 16m.【變式 2】已知:如圖,陽光通過窗口照射到室內(nèi),在地面上留下 1.5m 寬的亮區(qū) de.亮區(qū)一邊到窗下的墻腳距離 ce=1.2m,窗口高 ab=1.8m,求窗口底邊離地面的高 bc?思路點撥:光線 ad/be,作 efdc 交 ad 于 f.則,利用邊的比例關系求出 bc.

33、解:作 efdc 交 ad 于 f.因為 adbe,所以又因為, 所以,所以 .因為 abef, adbe,所以四邊形 abef 是平行四邊形,所以 ef=ab=1.8m.所以m.類型五、相似三角形的周長與面積8. 已知:如圖,在abc 與cad 中,dabc,cd 與 ab 相交于 e 點,且 aeeb=12,efbc交 ac 于 f 點,ade 的面積為 1,求bce 和aef 的面積思路點撥:利用adebce,以及其他有關的已知條件,可以求出bce 的面積abc 的邊 ab 上的高也是bce 的高,根據(jù) abbe=32,可求出abc 的面積最后利用aefabc,可求出aef 的面積解 :

34、 dabc, adebce sadesbce=ae2be2 aebe=12, sadesbce=14 sade=1, sbce=4 sabcsbce=abbe=32, sabc=6 efbc, aefabc aeab=13, saefsabc=ae2ab2=19 saef=總結升華:注意,同底(或等底)三角形的面積比等于這底上的高的比;同高(或等高)三角形的面積比等于對應底邊的比當兩個三角形相似時,它們的面積比等于對應線段比的平方,即相似比的平方舉一反三【變式 1】有同一三角形地塊的甲、乙兩地圖,比例尺分別為 1200 和 1500,求:甲地圖與乙地圖的相似比和面積比.解:設原地塊為abc,地

35、塊在甲圖上為a1b1c1,在乙圖上為a2b2c2. abca1b1c1a2b2c2且,.【變式 2】如圖,已知:abc 中,ab=5,bc=3,ac=4,pq/ab,p 點在 ac 上(與點 a、c 不重合), q 點在 bc 上(1) 當pqc 的面積與四邊形 pabq 的面積相等時,求 cp 的長;(2) 當pqc 的周長與四邊形 pabq 的周長相等時,求 cp 的長;解:(1)spqc=s 四邊形 pabqspqc:sabc=1:2pqab, pqcabcspqc:sabc=(cp:ca)2=1:2cp2=42 , cp=.(2)spqc 的周長與四邊形 pabq 的周長相等,pc+c

36、q=pa+ab+qb=(abc 的周長)=6pqab, pqcabc,即:解得,cp=類型六、綜合探究9. 如圖,abcd,a=90,ab=2,ad=5,p 是 ad 上一動點(不與 a、d 重合),pebp,p 為垂足, pe 交 dc 于點 e,(1) 設 ap=x,de=y,求 y 與 x 之間的函數(shù)關系式,并指出 x 的取值范圍;(2) 請你探索在點 p 運動的過程中,四邊形 abed 能否構成矩形?如果能,求出 ap 的長;如果不能,請說明理由.解 :(1)abcd ,a+d=180a=90, d=90,a=d 又pebp ,apb+dpe=90,又apb+abp=90, abp=dpe,abpdpe,即(2)欲使四邊形 abed 為矩形,只需 de=ab=2,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論