人教版九年級下冊數(shù)學(xué)《用函數(shù)觀點(diǎn)看一元二次方程》同步練習(xí)與解析_第1頁
人教版九年級下冊數(shù)學(xué)《用函數(shù)觀點(diǎn)看一元二次方程》同步練習(xí)與解析_第2頁
人教版九年級下冊數(shù)學(xué)《用函數(shù)觀點(diǎn)看一元二次方程》同步練習(xí)與解析_第3頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、26.2用函數(shù)觀點(diǎn)看一元二次方程(1)基礎(chǔ)鞏固1.如果拋物線y= 2x2+mx 3 的頂點(diǎn)在x 軸正半軸上,則m=_.2.二次函數(shù)y= 2x2+x1 ,當(dāng) x=_時,y有最 _值,為_. 它的圖象與x 軸 _2交點(diǎn) (填“有”或“沒有”).23.已知二次函數(shù)y=ax +bx+c 的圖象如圖1 所示 .這個二次函數(shù)的表達(dá)式是y=_ ;當(dāng)x=_ 時, y=3;根據(jù)圖象回答:當(dāng)x_時, y0.yy1BO12 xA-1Ox圖 1圖 24.某一元二次方程的兩個根分別為x1= 2,x2=5,請寫出一個經(jīng)過點(diǎn)( 2,0),(5,0)兩點(diǎn)二次函數(shù)的表達(dá)式: _.( 寫出一個符合要求的即可 )5.不論自變量 x

2、 取什么實數(shù), 二次函數(shù) y=2x26x+m 的函數(shù)值總是正值,你認(rèn)為 m 的取值范圍是 _,此時關(guān)于一元二次方程2x2 6x+m=0 的解的情況是 _( 填“有解” 或“無解” ).6.某一拋物線開口向下,且與x 軸無交點(diǎn),則具有這樣性質(zhì)的拋物線的表達(dá)式可能為_( 只寫一個 ),此類函數(shù)都有 _ 值 (填“最大”“最小” ).7.如圖 2,一小孩將一只皮球從A 處拋出去, 它所經(jīng)過的路線是某個二次函數(shù)圖象的一部分,如果他的出手處 A 距地面的距離 OA 為 1 m,球路的最高點(diǎn) B(8, 9),則這個二次函數(shù)的表達(dá)式為 _ ,小孩將球拋出了約_米 (精確到 0.1 m).8.若拋物線 y=x

3、2 (2k+1)x+k 2+2,與 x 軸有兩個交點(diǎn),則整數(shù)yk 的最小值是 _.9.已知二次函數(shù)2y=ax +bx+c(a 0)的圖象如圖 1 所示,由拋物線的特征你能得到含有-1O1xa、b、c 三個字母的等式或不等式為-1_( 寫出一個即可 ).10.等腰梯形的周長為60 cm,底角為 60,當(dāng)梯形腰x=_時,梯形面積最大,等于_.11.找出能反映下列各情景中兩個變量間關(guān)系的圖象,并將代號填在相應(yīng)的橫線上.(1)一輛勻速行駛的汽車,其速度與時間的關(guān)系.對應(yīng)的圖象是 _.(2)正方形的面積與邊長之間的關(guān)系.對應(yīng)的圖象是 _.(3)用一定長度的鐵絲圍成一個長方形,長方形的面積與其中一邊的長之

4、間的關(guān)系.對應(yīng)的圖象是 _.(4)在 220 V 電壓下,電流強(qiáng)度與電阻之間的關(guān)系.對應(yīng)的圖象是 _.yyyyOxOxOxOxAB100 元售出時,每天能賣出C個 .若這種商品的D12.將進(jìn)貨單價為70 元的某種商品按零售價20零售價在一定范圍內(nèi)每降價1 元,其日銷售量就增加了1 個,為了獲得最大利潤,則應(yīng)降價 _元,最大利潤為 _元 .13.關(guān)于二次函數(shù)y=ax2 +bx+c 的圖象有下列命題,其中是假命題的個數(shù)是()當(dāng) c=0 時,函數(shù)的圖象經(jīng)過原點(diǎn); 當(dāng) b=0 時,函數(shù)的圖象關(guān)于y 軸對稱 ;函數(shù)的圖象最高點(diǎn)的縱坐標(biāo)是4acb24a;當(dāng) c0 且函數(shù)的圖象開口向下時,方程ax2+bx+

5、c=0 必有兩個不相等的實根()A.0 個B.1 個C.2 個D.3 個14.已知拋物線22的根的情況是y=ax +bx+c 如圖所示,則關(guān)于x 的方程 ax +bx+c 8=0A. 有兩個不相等的正實數(shù)根 ;B. 有兩個異號實數(shù)根 ;C.有兩個相等的實數(shù)根;D.沒有實數(shù)根 .15.拋物線 y=kx2 7x 7 的圖象和 x 軸有交點(diǎn),則k 的取值范圍是 ()A. k7;B. k7 且 k 0;C.k 7;D. k7 且 k 0444416.如圖 6 所示,在一個直角三角形的內(nèi)部作一個長方形ABCD ,其中 AB 和 BC 分別在兩直角邊上,設(shè) AB=x m,長方形的面積為y m2 ,要使長方

6、形的面積最大,其邊長x 應(yīng)為 ( )24mB.6 mC.15 m5A.D.m42y8y5m AD2. 4OxBCO12x圖 412m圖 6圖 517.二次函數(shù) y=x2 4x+3 的圖象交 x 軸于 A、 B 兩點(diǎn),交 y 軸于點(diǎn) C, ABC 的面積為 ()A.1B.3C.4D.618.無論 m 為任何實數(shù),二次函數(shù)y=x2+(2 m)x+m 的圖象總過的點(diǎn)是 ()A.( 1, 0);B.(1 ,0)C.(1, 3) ;D.(1 , 3)19.為了備戰(zhàn) 2008奧運(yùn)會,中國足球隊在某次訓(xùn)練中,一隊員在距離球門12 米處的挑射,正好從2.4 米高 (球門橫梁底側(cè)高 )入網(wǎng) .若足球運(yùn)行的路線是

7、拋物線y=ax2+bx+c(如圖 5所示 ),則下列結(jié)論正確的是() a 11a0 0 b1B.m 1C.m 1D.m122.如圖 7,一次函數(shù) y= 2x+3的圖象與 x、y 軸分別相交于 A 、C 兩點(diǎn),二次函數(shù) y=x2+bx+c的圖象過點(diǎn) c 且與一次函數(shù)在第二象限交于另一點(diǎn)B ,若 AC CB=1 2,那么,這個二次函數(shù)的頂點(diǎn)坐標(biāo)為()A.( 1 ,11)B.( 1 , 5)C.(1,11)D.(1, 11)2424242423.某鄉(xiāng)鎮(zhèn)企業(yè)現(xiàn)在年產(chǎn)值是15 萬元,如果每增加100 元投資,一年增加 250 元產(chǎn)值,那么總產(chǎn)值 y(萬元 )與新增加的投資額x(萬元 )之間函數(shù)關(guān)系為 (

8、)A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.524. 如圖 8,鉛球運(yùn)動員擲鉛球的高度y(m) 與水平距離x(m) 之間的函數(shù)關(guān)系式是y= 1x2+2x+5 ,則該運(yùn)動員此次擲鉛球的成績是()1233A.6 mB.12 mC.8 mD.10 myyMBCAOAxxO圖 7圖 8O圖 9 B25.某幢建筑物,從10 m 高的窗口 A ,用水管向外噴水,噴出的水流呈拋物線狀(拋物線所在的平面與墻面垂直,如圖9,如果拋物線的最高點(diǎn)M 離墻 1 m,離地面40m,則水流3落地點(diǎn) B 離墻的距離 OB 是 ( )A.2 mB.3 mC.4 mD.5 m26.求

9、下列二次函數(shù)的圖像與x 軸的交點(diǎn)坐標(biāo) ,并作草圖驗證 .(1)y=1x2+x+1;(2)y=4x 2-8x+4;(3)y=-3x 2-6x-3;(4)y=-3x 2-x+4227.一元二次方程 x2+7x+9=1的根與二次函數(shù) y=x 2+7x+9的圖像有什么關(guān)系? 試把方程的根在圖像上表示出來 .28.利用二次函數(shù)的圖像求下列一元二次方程的根.(1)4x 2-8x+1=0;(2)x2-2x-5=0;(3)2x 2-6x+3=0;(3)x2-x-1=0.29.已知二次函數(shù)y=-x 2+4x-3, 其圖像與y 軸交于點(diǎn)B,與x 軸交于 A,C 兩點(diǎn) .求 ABC的周長和面積.能力提升30.某商場

10、以每件20 元的價格購進(jìn)一種商品,試銷中發(fā)現(xiàn),這種商品每天的銷售量m(件 )與每件的銷售價x(元 )滿足關(guān)系: m=1402x.(1)寫出商場賣這種商品每天的銷售利潤y 與每件的銷售價x 間的函數(shù)關(guān)系式;(2)如果商場要想每天獲得最大的銷售利潤,每件商品的售價定為多少最合適?最大銷售利潤為多少?31.已知二次函數(shù)y=( m2 2)x2 4mx+n 的圖象的對稱軸是x=2,且最高點(diǎn)在直線y= 1 x+1 上,2求這個二次函數(shù)的表達(dá)式.32.如圖,要建一個長方形養(yǎng)雞場,雞場的一邊靠墻,如果用50 m長的籬笆圍成中間有一道籬笆隔墻的養(yǎng)雞場,設(shè)它的長度為x m.(1)要使雞場面積最大,雞場的長度應(yīng)為多

11、少m?(2)如果中間有n(n 是大于 1 的整數(shù) )道籬笆隔墻,要使雞場面積最大,雞場的長應(yīng)為多少 m?比較 (1)(2) 的結(jié)果,你能得到什么結(jié)論?x33.當(dāng)運(yùn)動中的汽車撞到物體時,汽車所受到的損壞程度可以用“撞擊影響”來衡量.某型汽車的撞擊影響可以用公式I=2v2 來表示,其中v(千米 /分 )表示汽車的速度;(1)列表表示I 與 v 的關(guān)系 .(2)當(dāng)汽車的速度擴(kuò)大為原來的2 倍時,撞擊影響擴(kuò)大為原來的多少倍?34.如圖 7,一位運(yùn)動員在距籃下 4 米處跳起投籃, 球運(yùn)行的路線是拋物線, 當(dāng)球運(yùn)行的水平距離為 2.5 米時,達(dá)到最大高度 3.5 米,然后準(zhǔn)確落入籃圈 .已知籃圈中心到地面

12、的距離為3.05 米 .(1)建立如圖所示的直角坐標(biāo)系,求拋物線的表達(dá)式;(2)該運(yùn)動員身高1.8 米,在這次跳投中, 球在頭頂上方0.25 米處出手, 問:球出手時,他跳離地面的高度是多少.y(0,3.5)3.05 mOx4 m35.某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,下面的二次函數(shù)的圖象 (部分 )刻畫了該公司年初以來累積利潤S(萬元 )與銷售時間t(月 )之間的關(guān)系 (即前 t 個月的利潤總和 S 與 t 之間的關(guān)系 ).(1)根據(jù)圖象你可獲得哪些關(guān)于該公司的具體信息?(至少寫出三條 )(2)還能提出其他相關(guān)的問題嗎?若不能,說明理由;若能,進(jìn)行

13、解答,并與同伴交流.S (萬元)54?32月1份Ot-1-236.把一個數(shù)m 分解為兩數(shù)之和,何時它們的乘積最大?你能得出一個一般性的結(jié)論嗎?綜合探究37.有一種螃蟹,從海上捕獲后不放養(yǎng),最多只能存活兩天.如果放養(yǎng)在塘內(nèi),可以延長存活時間,但每天也有一定數(shù)量的蟹死去.假設(shè)放養(yǎng)期內(nèi)蟹的個體質(zhì)量基本保持不變,現(xiàn)有一經(jīng)銷商,按市場價收購這種活蟹1000 kg 放養(yǎng)在塘內(nèi),此時市場價為每千克30 元,據(jù)測算,此后每千克活蟹的市場價每天可上升1 元,但是,放養(yǎng)一天需支出各種費(fèi)用為400元,且平均每天還有10 kg 蟹死去,假定死蟹均于當(dāng)天全部銷售出,售價都是每千克20元 .(1)設(shè)x 天后每千克活蟹的市

14、場價為p 元,寫出p 關(guān)于x 的函數(shù)關(guān)系式;(2)如果放養(yǎng)x 天后將活蟹一次性出售,并記1000 kg 蟹的銷售總額為Q 元,寫出Q 關(guān)于 x 的函數(shù)關(guān)系式.(3)該經(jīng)銷商將這批蟹放養(yǎng)多少天后出售,可獲最大利潤(利潤 =Q收購總額 )?38.圖中a 是棱長為a 的小正方體,圖b、圖c 由這樣的小正方體擺放而成,按照這樣的方法繼續(xù)擺放,自上而下分別叫第一層,第二層 ,第n 層,第n 層的小正方形的個數(shù)記為S,解答下列問題:abc(1)按照要求填表:n1234S136(2)寫出當(dāng) n=10 時, S=_;(3)根據(jù)上表中的數(shù)據(jù),把 S 作為縱坐標(biāo), n 作為橫坐標(biāo), 在平面直角坐標(biāo)系中描出相應(yīng)的各

15、點(diǎn) ;(4)請你猜一猜上述各點(diǎn)會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)的圖象上,求出該函數(shù)的表達(dá)式;若不在,說明理由.SOn參考答案1.2 61大32.沒有483. x2 2x 3 或 1 24. y=x2 3x 105. m9無解6.y= x2+x 1 最大27.y=1x2 +2x+1 16.588. 29.b2 4ac0(不唯一 )10 . 15 cm2253cm2211.(1)A(2)D(3)C(4)B12. 562513.B14.C 15.B 16.D17.B18.D 19.B20.B21.B 22.A 23.C24.D25.B 提示:設(shè)水流的解析式為y=a(x h)2 +k, A(0

16、, 10), M(1 , 40 ).3 y=a(x 1)2 + 40 , 10=a+ 40 .33 a= 10 .3 y= 10 (x 1)2+ 40 .33令 y=0 得 x= 1 或 x=3 得 B(3 , 0),即 B 點(diǎn)離墻的距離 OB 是 3 m26.(1) 沒有交點(diǎn);(2)有一個交點(diǎn) (1,0);(3) 有一個交點(diǎn) (-1,0);(4) 有兩個交點(diǎn) ( 1,0),(4,0),草圖略 .327.該方程的根是該函數(shù)的圖像與直線y=1 的交點(diǎn)的橫坐標(biāo) .28.(1)x1 1.9,x2 0. 3.4,x2-1.4;(3)x 1 2.7,x2 0.6;(4)x1 1.6,x2-0 .61;(

17、2)x29.令 x=0,得 y=-3, 故 B 點(diǎn)坐標(biāo)為 (0,-3).解方程2+4x-3=0, 得 x1=1,x2=3.-x故 A 、 C 兩點(diǎn)的坐標(biāo)為(1,0),(3,0).所以 AC=3-1=2,AB=123210,BC= 32323 2 , OB= -3 =3.C ABC =AB+BC+AC=210 32.SABC =1AC OB=1 2 3=3.2230 (1)y= 2x2+180x 2800.(2)y= 2x2+180x 2800= 2(x2 90x) 2800= 2(x 45)2+1250.當(dāng) x=45 時, y 最大 =1250.每件商品售價定為 45 元最合適,此銷售利潤最大

18、,為1250 元 .131二次函數(shù)的對稱軸x=2,此圖象頂點(diǎn)的橫坐標(biāo)為2,此點(diǎn)在直線y=x+1 上 .2 y= 1 2+1=2.2 y=(m2 2)x2 4mx+n 的圖象頂點(diǎn)坐標(biāo)為(2, 2). b =2.4m=2.2a2(m 22)解得 m=1 或 m=2.最高點(diǎn)在直線上,a0, m= 1. y=x2+4x+n 頂點(diǎn)為 (2, 2). 2= 4+8+ n. n= 2.則 y= x2+4x+2.32(1) 依題意得雞場面積 y=1 x250 x. y= 150313x2+x=(x2 50x)1336253=(x 25)2+,33625當(dāng) x=25 時, y=最大,3625即雞場的長度為25

19、m 時,其面積最大為m2.3(2)如中間有幾道隔墻,則隔墻長為50 xm. y= 50 x x= 1 x2+ 50 xnnnn=1(x2 50x) = 1(x 25)2+625,nnn當(dāng) x=25 時, y 最大 = 625 ,n即雞場的長度為25 m 時,雞場面積為 625m2.n結(jié)論:無論雞場中間有多少道籬笆隔墻,要使雞場面積最大,其長都是25 m.33(1) 如下表v 2 111230122I82101818222(2)I=2 (2v) 2=4 2v2.當(dāng)汽車的速度擴(kuò)大為原來的2 倍時,撞擊影響擴(kuò)大為原來的4 倍 .34(1) 設(shè)拋物線的表達(dá)式為y=ax2+bx+c.由圖知圖象過以下點(diǎn):(0,3.5), (1.5, 3.05).b0,a0.2,2ac 3.5,得 b0,3.051.52 a1.5bc,c3.5.拋物線的表達(dá)式為y=0.2x2+3.5.(2)設(shè)球出手時,他跳離地面的高度為h m,則球出手時,球的高度為h+1.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論