版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2015年山東省高考數(shù)學(xué)試卷(文科)一、選擇題(共10小題,每小題5分,滿分50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1(5分)(2015山東)已知集合a=x|2x4,b=x|(x1)(x3)0,則ab=()a(1,3)b(1,4)c(2,3)d(2,4)2(5分)(2015山東)若復(fù)數(shù)z滿足=i,其中i為虛數(shù)單位,則z=()a1ib1+ic1id1+i3(5分)(2015山東)設(shè)a=0.60.6,b=0.61.5,c=1.50.6,則a,b,c的大小關(guān)系是()aabcbacbcbacdbca4(5分)(2015山東)要得到函數(shù)y=sin(4x)的圖象,只需將函數(shù)y=sin4
2、x的圖象()a向左平移單位b向右平移單位c向左平移單位d向右平移單位5(5分)(2015山東)當(dāng)mn*,命題“若m0,則方程x2+xm=0有實(shí)根”的逆否命題是()a若方程x2+xm=0有實(shí)根,則m0b若方程x2+xm=0有實(shí)根,則m0c若方程x2+xm=0沒有實(shí)根,則m0d若方程x2+xm=0沒有實(shí)根,則m06(5分)(2015山東)為比較甲,乙兩地某月14時(shí)的氣溫,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:)制成如圖所示的莖葉圖,考慮以下結(jié)論:甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;甲地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差
3、小于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差;甲地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的編號為()abcd7(5分)(2015山東)在區(qū)間0,2上隨機(jī)地取一個(gè)數(shù)x,則事件“1log(x+)1”發(fā)生的概率為()abcd8(5分)(2015山東)若函數(shù)f(x)=是奇函數(shù),則使f(x)3成立的x的取值范圍為()a(,1)b(1,0)c(0,1)d(1,+)9(5分)(2015山東)已知等腰直角三角形的直角邊的長為2,將該三角形繞其斜邊所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為()abc2d410(5分)(2015山東)設(shè)函數(shù)f(x)=,若f(f()=4
4、,則b=()a1bcd二、填空題(共5小題,每小題5分,滿分25分)11(5分)(2015山東)執(zhí)行如圖的程序框圖,若輸入的x的值為1,則輸出的y的值是12(5分)(2015山東)若x,y滿足約束條件,則z=x+3y的最大值為13(5分)(2015山東)過點(diǎn)p(1,)作圓x2+y2=1的兩條切線,切點(diǎn)分別為a,b,則=14(5分)(2015山東)定義運(yùn)算“”xy=(x,yr,xy0)當(dāng)x0,y0時(shí),xy+(2y)x的最小值為15(5分)(2015山東)過雙曲線c:(a0,b0)的右焦點(diǎn)作一條與其漸近線平行的直線,交c于點(diǎn)p若點(diǎn)p的橫坐標(biāo)為2a,則c的離心率為三、解答題(共6小題,滿分75分)1
5、6(12分)(2015山東)某中學(xué)調(diào)查了某班全部45名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)參加書法社團(tuán)未參加書法社團(tuán)參加演講社團(tuán)85未參加演講社團(tuán)230()從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加一個(gè)社團(tuán)的概率;()在既參加書法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)a1,a2,a3,a4,a5,3名女同學(xué)b1,b2,b3現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求a1被選中且b1未被選中的概率17(12分)(2015山東)abc中,角a,b,c所對的邊分別為a,b,c,已知cosb=,sin(a+b)=,ac=2,求sina和c的值18(12分)(2015山東)如圖
6、,三棱臺defabc中,ab=2de,g,h分別為ac,bc的中點(diǎn)(1)求證:bd平面fgh;(2)若cfbc,abbc,求證:平面bcd平面egh19(12分)(2015山東)已知數(shù)列an是首項(xiàng)為正數(shù)的等差數(shù)列,數(shù)列的前n項(xiàng)和為(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)bn=(an+1)2,求數(shù)列bn的前n項(xiàng)和tn20(13分)(2015山東)設(shè)函數(shù)f(x)=(x+a)lnx,g(x)=已知曲線y=f(x)在點(diǎn)(1,f(x)處的切線與直線2xy=0平行()求a的值;()是否存在自然數(shù)k,使得方程f(x)=g(x)在(k,k+1)內(nèi)存在唯一的根?如果存在,求出k;如果不存在,請說明理由;()設(shè)函數(shù)m
7、(x)=minf(x),g(x)(minp,q表示p,q中的較小值),求m(x)的最大值21(14分)(2015山東)平面直角坐標(biāo)系xoy中,已知橢圓c:=1(ab0)的離心率為,且點(diǎn)(,)在橢圓c上()求橢圓c的方程;()設(shè)橢圓e:=1,p為橢圓c上任意一點(diǎn),過點(diǎn)p的直線y=kx+m交橢圓e與a,b兩點(diǎn),射線po交橢圓e于點(diǎn)q ()求的值; ()求abq面積的最大值2015年山東省高考數(shù)學(xué)試卷(文科)參考答案與試題解析一、選擇題(共10小題,每小題5分,滿分50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1(5分)(2015山東)已知集合a=x|2x4,b=x|(x1)(x3)0
8、,則ab=()a(1,3)b(1,4)c(2,3)d(2,4)考點(diǎn):交集及其運(yùn)算專題:集合分析:求出集合b,然后求解集合的交集解答:解:b=x|(x1)(x3)0=x|1x3,a=x|2x4,ab=x|2x3=(2,3)故選:c點(diǎn)評:本題考查集合的交集的求法,考查計(jì)算能力2(5分)(2015山東)若復(fù)數(shù)z滿足=i,其中i為虛數(shù)單位,則z=()a1ib1+ic1id1+i考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算菁優(yōu)網(wǎng)版權(quán)所有專題:數(shù)系的擴(kuò)充和復(fù)數(shù)分析:直接利用復(fù)數(shù)的乘除運(yùn)算法則化簡求解即可解答:解:=i,則=i(1i)=1+i,可得z=1i故選:a點(diǎn)評:本題考查復(fù)數(shù)的基本運(yùn)算,基本知識的考查3(5分)(20
9、15山東)設(shè)a=0.60.6,b=0.61.5,c=1.50.6,則a,b,c的大小關(guān)系是()aabcbacbcbacdbca考點(diǎn):不等式比較大小菁優(yōu)網(wǎng)版權(quán)所有專題:函數(shù)的性質(zhì)及應(yīng)用分析:直接判斷a,b的大小,然后求出結(jié)果解答:解:由題意可知1a=0.60.6b=0.61.5,c=1.50.61,可知:cab故選:c點(diǎn)評:本題考查指數(shù)函數(shù)的單調(diào)性的應(yīng)用,考查計(jì)算能力4(5分)(2015山東)要得到函數(shù)y=sin(4x)的圖象,只需將函數(shù)y=sin4x的圖象()a向左平移單位b向右平移單位c向左平移單位d向右平移單位考點(diǎn):函數(shù)y=asin(x+)的圖象變換菁優(yōu)網(wǎng)版權(quán)所有專題:三角函數(shù)的圖像與性質(zhì)
10、分析:直接利用三角函數(shù)的平移原則推出結(jié)果即可解答:解:因?yàn)楹瘮?shù)y=sin(4x)=sin4(x),要得到函數(shù)y=sin(4x)的圖象,只需將函數(shù)y=sin4x的圖象向右平移單位故選:b點(diǎn)評:本題考查三角函數(shù)的圖象的平移,值域平移變換中x的系數(shù)是易錯點(diǎn)5(5分)(2015山東)當(dāng)mn*,命題“若m0,則方程x2+xm=0有實(shí)根”的逆否命題是()a若方程x2+xm=0有實(shí)根,則m0b若方程x2+xm=0有實(shí)根,則m0c若方程x2+xm=0沒有實(shí)根,則m0d若方程x2+xm=0沒有實(shí)根,則m0考點(diǎn):四種命題間的逆否關(guān)系菁優(yōu)網(wǎng)版權(quán)所有專題:簡易邏輯分析:直接利用逆否命題的定義寫出結(jié)果判斷選項(xiàng)即可解答:
11、解:由逆否命題的定義可知:當(dāng)mn*,命題“若m0,則方程x2+xm=0有實(shí)根”的逆否命題是:若方程x2+xm=0沒有實(shí)根,則m0故選:d點(diǎn)評:本題考查四種命題的逆否關(guān)系,考查基本知識的應(yīng)用6(5分)(2015山東)為比較甲,乙兩地某月14時(shí)的氣溫,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:)制成如圖所示的莖葉圖,考慮以下結(jié)論:甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;甲地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差小于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差;甲地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)
12、論的編號為()abcd考點(diǎn):命題的真假判斷與應(yīng)用菁優(yōu)網(wǎng)版權(quán)所有專題:概率與統(tǒng)計(jì)分析:由已知的莖葉圖,我們易分析出甲、乙甲,乙兩地某月14時(shí)的氣溫抽取的樣本溫度,進(jìn)而求出兩組數(shù)據(jù)的平均數(shù)、及方差可得答案解答:解:由莖葉圖中的數(shù)據(jù),我們可得甲、乙甲,乙兩地某月14時(shí)的氣溫抽取的樣本溫度分別為:甲:26,28,29,31,31乙:28,29,30,31,32;可得:甲地該月14時(shí)的平均氣溫:(26+28+29+31+31)=29,乙地該月14時(shí)的平均氣溫:(28+29+30+31+32)=30,故甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;甲地該月14時(shí)溫度的方差為:=(2629)2+(2
13、829)2+(2929)2+(3129)2+(3129)2=3.6乙地該月14時(shí)溫度的方差為:=(2830)2+(2930)2+(3030)2+(3130)2+(3230)2=2,故,所以甲地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的氣溫標(biāo)準(zhǔn)差故選:b點(diǎn)評:本題考查數(shù)據(jù)的離散程度與莖葉圖形狀的關(guān)系,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題7(5分)(2015山東)在區(qū)間0,2上隨機(jī)地取一個(gè)數(shù)x,則事件“1log(x+)1”發(fā)生的概率為()abcd考點(diǎn):幾何概型菁優(yōu)網(wǎng)版權(quán)所有專題:計(jì)算題;概率與統(tǒng)計(jì)分析:先解已知不等式,再利用解得的區(qū)間長度與區(qū)間0,2的長度求比值即得解答:解:利用幾何概型,其測度為線段
14、的長度1log(x+)1解可得,x,0x20x所求的概率為:p=故選:a點(diǎn)評:本題主要考查了幾何概型,如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型8(5分)(2015山東)若函數(shù)f(x)=是奇函數(shù),則使f(x)3成立的x的取值范圍為()a(,1)b(1,0)c(0,1)d(1,+)考點(diǎn):函數(shù)奇偶性的性質(zhì);函數(shù)單調(diào)性的性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專題:計(jì)算題;不等式的解法及應(yīng)用分析:由f(x)為奇函數(shù),根據(jù)奇函數(shù)的定義可求a,代入即可求解不等式解答:解:f(x)=是奇函數(shù),f(x)=f(x)即整理可得,1a2x=a2xa=1,f(x)
15、=f(x)=330,整理可得,12x2解可得,0x1故選:c點(diǎn)評:本題主要考查了奇函數(shù)的定義的應(yīng)用及分式不等式的求解,屬于基礎(chǔ)試題9(5分)(2015山東)已知等腰直角三角形的直角邊的長為2,將該三角形繞其斜邊所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為()abc2d4考點(diǎn):棱柱、棱錐、棱臺的體積菁優(yōu)網(wǎng)版權(quán)所有專題:空間位置關(guān)系與距離分析:畫出圖形,根據(jù)圓錐的體積公式直接計(jì)算即可解答:解:如圖為等腰直角三角形旋轉(zhuǎn)而成的旋轉(zhuǎn)體v=2sh=r2h=2()2=故選:b點(diǎn)評:本題考查圓錐的體積公式,考查空間想象能力以及計(jì)算能力是基礎(chǔ)題10(5分)(2015山東)設(shè)函數(shù)f(x)=,若f(f()=
16、4,則b=()a1bcd考點(diǎn):函數(shù)的零點(diǎn);函數(shù)的值菁優(yōu)網(wǎng)版權(quán)所有專題:函數(shù)的性質(zhì)及應(yīng)用分析:直接利用分段函數(shù)以及函數(shù)的零點(diǎn),求解即可解答:解:函數(shù)f(x)=,若f(f()=4,可得f()=4,若,即b,可得,解得b=若,即b,可得,解得b=(舍去)故選:d點(diǎn)評:本題考查函數(shù)的零點(diǎn)函數(shù)值的求法,考查分段函數(shù)的應(yīng)用二、填空題(共5小題,每小題5分,滿分25分)11(5分)(2015山東)執(zhí)行如圖的程序框圖,若輸入的x的值為1,則輸出的y的值是13考點(diǎn):程序框圖菁優(yōu)網(wǎng)版權(quán)所有專題:圖表型;算法和程序框圖分析:模擬執(zhí)行程序框圖,依次寫出得到的x,y的值,當(dāng)x=2時(shí)不滿足條件x2,計(jì)算并輸出y的值為13
17、解答:解:模擬執(zhí)行程序框圖,可得x=1滿足條件x2,x=2不滿足條件x2,y=13輸出y的值為13故答案為:13點(diǎn)評:本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖,屬于基本知識的考查12(5分)(2015山東)若x,y滿足約束條件,則z=x+3y的最大值為7考點(diǎn):簡單線性規(guī)劃菁優(yōu)網(wǎng)版權(quán)所有專題:不等式的解法及應(yīng)用分析:作出題中不等式組表示的平面區(qū)域,再將目標(biāo)函數(shù)z=x+3y對應(yīng)的直線進(jìn)行平移,可得當(dāng)x=1且y=2時(shí),z取得最大值解答:解:作出不等式組表示的平面區(qū)域,得到如圖的三角形及其內(nèi)部,由可得a(1,2),z=x+3y,將直線進(jìn)行平移,當(dāng)l經(jīng)過點(diǎn)a時(shí),目標(biāo)函數(shù)z達(dá)到最大值z最大值=1+23=7故答案為
18、:7點(diǎn)評:本題給出二元一次不等式組,求目標(biāo)函數(shù)z=x+3y的最大值,著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于基礎(chǔ)題13(5分)(2015山東)過點(diǎn)p(1,)作圓x2+y2=1的兩條切線,切點(diǎn)分別為a,b,則=考點(diǎn):平面向量數(shù)量積的運(yùn)算;直線與圓相交的性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專題:計(jì)算題;平面向量及應(yīng)用分析:根據(jù)直線與圓相切的性質(zhì)可求pa=pb,及apb,然后代入向量數(shù)量積的定義可求解答:解:連接oa,ob,po則oa=ob=1,po=,2,oapa,obpb,rtpao中,oa=1,po=2,pa=opa=30,bpa=2opa=60=故答案為:點(diǎn)評:本題主要考查了圓的切
19、線性質(zhì)的應(yīng)用及平面向量的數(shù)量積的定義的應(yīng)用,屬于基礎(chǔ)試題14(5分)(2015山東)定義運(yùn)算“”xy=(x,yr,xy0)當(dāng)x0,y0時(shí),xy+(2y)x的最小值為考點(diǎn):函數(shù)的最值及其幾何意義菁優(yōu)網(wǎng)版權(quán)所有專題:函數(shù)的性質(zhì)及應(yīng)用;不等式分析:通過新定義可得xy+(2y)x=,利用基本不等式即得結(jié)論解答:解:xy=,xy+(2y)x=+=,由x0,y0,x2+2y22=xy,當(dāng)且僅當(dāng)x=y時(shí)等號成立,=,故答案為:點(diǎn)評:本題以新定義為背景,考查函數(shù)的最值,涉及到基本不等式等知識,注意解題方法的積累,屬于中檔題15(5分)(2015山東)過雙曲線c:(a0,b0)的右焦點(diǎn)作一條與其漸近線平行的直線
20、,交c于點(diǎn)p若點(diǎn)p的橫坐標(biāo)為2a,則c的離心率為2+考點(diǎn):雙曲線的簡單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專題:計(jì)算題;圓錐曲線的定義、性質(zhì)與方程分析:求出p的坐標(biāo),可得直線的斜率,利用條件建立方程,即可得出結(jié)論解答:解:x=2a時(shí),代入雙曲線方程可得y=b,取p(2a,b),雙曲線c:(a0,b0)的右焦點(diǎn)作一條與其漸近線平行的直線的斜率為,=e=2+故答案為:2+點(diǎn)評:本題考查雙曲線的性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ)三、解答題(共6小題,滿分75分)16(12分)(2015山東)某中學(xué)調(diào)查了某班全部45名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)參加書法社團(tuán)未參加書法社團(tuán)參加演講社團(tuán)85未
21、參加演講社團(tuán)230()從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加一個(gè)社團(tuán)的概率;()在既參加書法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)a1,a2,a3,a4,a5,3名女同學(xué)b1,b2,b3現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求a1被選中且b1未被選中的概率考點(diǎn):古典概型及其概率計(jì)算公式菁優(yōu)網(wǎng)版權(quán)所有專題:概率與統(tǒng)計(jì)分析:()先判斷出這是一個(gè)古典概型,所以求出基本事件總數(shù),“至少參加一個(gè)社團(tuán)”事件包含的基本事件個(gè)數(shù),從而根據(jù)古典概型的概率計(jì)算公式計(jì)算即可;()先求基本事件總數(shù),即從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,有多少中選法,這個(gè)可利用分步計(jì)數(shù)原理求解,再求出“a1被選中,而
22、b1未被選中”事件包含的基本事件個(gè)數(shù),這個(gè)容易求解,然后根據(jù)古典概型的概率公式計(jì)算即可解答:解:()設(shè)“至少參加一個(gè)社團(tuán)”為事件a;從45名同學(xué)中任選一名有45種選法,基本事件數(shù)為45;通過列表可知事件a的基本事件數(shù)為8+2+5=15;這是一個(gè)古典概型,p(a)=;()從5名男同學(xué)中任選一個(gè)有5種選法,從3名女同學(xué)中任選一名有3種選法;從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人的選法有53=15,即基本事件總數(shù)為15;設(shè)“a1被選中,而b1未被選中”為事件b,顯然事件b包含的基本事件數(shù)為2;這是一個(gè)古典概型,點(diǎn)評:考查古典概型的概念,以及古典概型的概率的求法,分步計(jì)數(shù)原理的應(yīng)用17(12分)(2
23、015山東)abc中,角a,b,c所對的邊分別為a,b,c,已知cosb=,sin(a+b)=,ac=2,求sina和c的值考點(diǎn):正弦定理;兩角和與差的正弦函數(shù)菁優(yōu)網(wǎng)版權(quán)所有專題:解三角形分析:利用兩角和與差的正弦函數(shù)公式以及基本關(guān)系式,解方程可得;利用正弦定理解之解答:解:因?yàn)閍bc中,角a,b,c所對的邊分別為a,b,c已知cosb=,sin(a+b)=,ac=2,所以sinb=,sinacosb+cosasinb=,所以sina+cosa=,結(jié)合平方關(guān)系得27sin2a6sina16=0,解得sina=或者sina=(舍去);由正弦定理,由可知sin(a+b)=sinc=,sina=,所
24、以a=2c,又ac=2,所以c=1點(diǎn)評:本題考查了利用三角函數(shù)知識解三角形,用到了兩角和與差的正弦函數(shù)、同角三角函數(shù)的基本關(guān)系式、正弦定理等知識18(12分)(2015山東)如圖,三棱臺defabc中,ab=2de,g,h分別為ac,bc的中點(diǎn)(1)求證:bd平面fgh;(2)若cfbc,abbc,求證:平面bcd平面egh考點(diǎn):平面與平面垂直的判定;直線與平面平行的判定菁優(yōu)網(wǎng)版權(quán)所有專題:空間位置關(guān)系與距離分析:(i)證法一:如圖所示,連接dg,cd,設(shè)cdgf=m,連接mh由已知可得四邊形cfdg是平行四邊形,dm=mc利用三角形的中位線定理可得:mhbd,可得bd平面fgh;證法二:在三
25、棱臺defabc中,ab=2de,h為bc的中點(diǎn)可得四邊形bhfe為平行四邊形behf又ghab,可得平面fgh平面abed,即可證明bd平面fgh(ii)連接he,利用三角形中位線定理可得ghab,于是ghbc可證明efch是平行四邊形,可得hebc因此bc平面egh,即可證明平面bcd平面egh解答:(i)證法一:如圖所示,連接dg,cd,設(shè)cdgf=m,連接mh在三棱臺defabc中,ab=2de,g為ac的中點(diǎn),四邊形cfdg是平行四邊形,dm=mc又bh=hc,mhbd,又bd平面fgh,mh平面fgh,bd平面fgh;證法二:在三棱臺defabc中,ab=2de,h為bc的中點(diǎn),四
26、邊形bhfe為平行四邊形behf在abc中,g為ac的中點(diǎn),h為bc的中點(diǎn),ghab,又ghhf=h,平面fgh平面abed,bd平面abed,bd平面fgh(ii)證明:連接he,g,h分別為ac,bc的中點(diǎn),ghab,abbc,ghbc,又h為bc的中點(diǎn),efhc,ef=hcefch是平行四邊形,cfhecfbc,hebc又he,gh平面egh,hegh=h,bc平面egh,又bc平面bcd,平面bcd平面egh點(diǎn)評:本題考查了空間線面面面平行與垂直的判定及性質(zhì)定理、三角形中位線定理、平行四邊形的判定與性質(zhì)定理,考查了空間想象能力、推理能力,屬于中檔題19(12分)(2015山東)已知數(shù)列
27、an是首項(xiàng)為正數(shù)的等差數(shù)列,數(shù)列的前n項(xiàng)和為(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)bn=(an+1)2,求數(shù)列bn的前n項(xiàng)和tn考點(diǎn):數(shù)列的求和菁優(yōu)網(wǎng)版權(quán)所有專題:等差數(shù)列與等比數(shù)列分析:(1)通過對cn=分離分母,并項(xiàng)相加并利用數(shù)列的前n項(xiàng)和為即得首項(xiàng)和公差,進(jìn)而可得結(jié)論;(2)通過bn=n4n,寫出tn、4tn的表達(dá)式,兩式相減后利用等比數(shù)列的求和公式即得結(jié)論解答:解:(1)設(shè)等差數(shù)列an的首項(xiàng)為a1、公差為d,則a10,an=a1+(n1)d,an+1=a1+nd,令cn=,則cn=,c1+c2+cn1+cn=+=,又?jǐn)?shù)列的前n項(xiàng)和為,a1=1或1(舍),d=2,an=1+2(n1)=2n
28、1;(2)由(1)知bn=(an+1)2=(2n1+1)22n1=n4n,tn=b1+b2+bn=141+242+n4n,4tn=142+243+(n1)4n+n4n+1,兩式相減,得3tn=41+42+4n4n+1=4n+1,tn=點(diǎn)評:本題考查求數(shù)列的通項(xiàng)及求和,利用錯位相減法是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題20(13分)(2015山東)設(shè)函數(shù)f(x)=(x+a)lnx,g(x)=已知曲線y=f(x)在點(diǎn)(1,f(x)處的切線與直線2xy=0平行()求a的值;()是否存在自然數(shù)k,使得方程f(x)=g(x)在(k,k+1)內(nèi)存在唯一的根?如果存在,求出k;如果不存在,請說明
29、理由;()設(shè)函數(shù)m(x)=minf(x),g(x)(minp,q表示p,q中的較小值),求m(x)的最大值考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程;導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用菁優(yōu)網(wǎng)版權(quán)所有專題:函數(shù)的性質(zhì)及應(yīng)用;導(dǎo)數(shù)的概念及應(yīng)用分析:()求出f(x)的導(dǎo)數(shù),求得切線的斜率,由兩直線平行的條件:斜率相等,解方程可得a=1;()求出f(x)、g(x)的導(dǎo)數(shù)和單調(diào)區(qū)間,最值,由零點(diǎn)存在定理,即可判斷存在k=1;()由()求得m(x)的解析式,通過g(x)的最大值,即可得到所求解答:解:()函數(shù)f(x)=(x+a)lnx的導(dǎo)數(shù)為f(x)=lnx+1+,曲線y=f(x)在點(diǎn)(1,f(1)處的切線斜率為
30、f(1)=1+a,由切線與直線2xy=0平行,則a+1=2,解得a=1;()由()可得f(x)=(x+1)lnx,f(x)=lnx+1+,令h(x)=lnx+1+,h(x)=,當(dāng)x(0,1),h(x)0,h(x)在(0,1)遞減,當(dāng)x1時(shí),h(x)0,h(x)在(1,+)遞增當(dāng)x=1時(shí),h(x)min=h(1)=20,即f(x)0,f(x)在(0,+)遞增,即有f(x)在(k,k+1)遞增,g(x)=的導(dǎo)數(shù)為g(x)=,當(dāng)x(0,2),g(x)0,h(x)在(0,2)遞增,當(dāng)x2時(shí),g(x)0,g(x)在(2,+)遞減則x=2取得最大值,令t(x)=f(x)g(x)=(x+1)lnx,t(1)=0,t(2)=3ln20,由零點(diǎn)存
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店人事管理培訓(xùn)
- 2024-2025學(xué)年江蘇省江都區(qū)第二中學(xué)八年級(上)10月月考數(shù)學(xué)試卷(含答案)
- T-YNZYC 0090-2023 綠色藥材 紅大戟
- T-XMSSAL 0112-2024 供校集體配餐食品安全管理規(guī)范
- 高中物理第十八章原子結(jié)構(gòu)4玻爾的原子模型課時(shí)作業(yè)課件新人教版選修3-
- Windows Server網(wǎng)絡(luò)管理項(xiàng)目教程(Windows Server 2022)(微課版)2.1 知識引入
- 狼和小羊語文小學(xué)教育教育專區(qū)
- 一年級下冊生命生態(tài)安全教案及一年級傳統(tǒng)文化教案
- 2024至2030年中國異型商務(wù)貼數(shù)據(jù)監(jiān)測研究報(bào)告
- 2024至2030年中國發(fā)電、電焊兩用機(jī)組數(shù)據(jù)監(jiān)測研究報(bào)告
- 2023年全國統(tǒng)一高考英語試卷(甲卷)及答案解析
- 初中英語-5 Why do you like pandas教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思
- 三叉神經(jīng)痛微球囊壓迫術(shù)的護(hù)理
- 新生兒科品管圈成果匯報(bào)模板成品-降低新生兒紅臀發(fā)生率課件
- 幼兒園大班數(shù)學(xué)課件《認(rèn)識單雙數(shù)》
- 體育課少年拳(第一套)教案
- 新編簡明英語語言學(xué)教程戴煒棟第1-3章課后練習(xí)題答案
- 國家免疫規(guī)劃疫苗兒童免疫程序說明(2021版)
- 語文研究性學(xué)習(xí)提出的背景及意義
- 道路維修工程技術(shù)標(biāo)
- 工作督辦通知單范本模板
評論
0/150
提交評論